Spatial-Temporal Feature Fusion Neural Network for EEG-Based Emotion Recognition
The temporal and spatial information of electroencephalogram (EEG) are essential for the emotion recognition model to learn the discriminative features. Hence, we propose a novel hybrid spatial-temporal feature fusion neural network (STFFNN) to extract the discriminative features and integrate compl...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on instrumentation and measurement 2022, Vol.71, p.1-12 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on instrumentation and measurement |
container_volume | 71 |
creator | Wang, Zhe Wang, Yongxiong Zhang, Jiapeng Hu, Chuanfei Yin, Zhong Song, Yu |
description | The temporal and spatial information of electroencephalogram (EEG) are essential for the emotion recognition model to learn the discriminative features. Hence, we propose a novel hybrid spatial-temporal feature fusion neural network (STFFNN) to extract the discriminative features and integrate complementary information. The generated power topographic maps, which capture dependencies among the electrodes, are fed to convolutional neural network (CNN) for spatial feature learning. Furthermore, instance normalizations (INs) and batch normalizations (BNs) within the CNN are appropriately combined to alleviate the individual difference and preserve the domain-invariant information. Meanwhile, a feedforward network is adopted for temporal feature learning. Due to the high dimensionality of EEG features, we propose a grid-search-based configurational optimization method to robustly reduce the dimensionality. Finally, inspired by the multimodal fusion strategies that leverage the complementarity of data to obtain more robust predictions, we utilize a bidirectional long short-term memory (Bi-LSTM) network for temporal and spatial feature fusion. To validate the effectiveness of the proposed method, the tenfold cross-validation experiments and subject-dependent experiments are both conducted on the DEAP database. The experimental results demonstrate that the proposed method achieves outstanding performance in emotion recognition with arousal and valence level. |
doi_str_mv | 10.1109/TIM.2022.3165280 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9751142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9751142</ieee_id><sourcerecordid>2652700820</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-b1e96cc859e05a8a19a708173e828898c9a8470fdeb10cd4a818b53d98b60f963</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFbvgpeA59TZTfbrqCWthVpF63nZJBNJbbtxN6H4701o8TQvw_POwEPILYUJpaAf1ouXCQPGJgkVnCk4IyPKuYy1EOycjACoinXKxSW5CmEDAFKkckTePhrb1nYbr3HXOG-30Qxt23mMZl2o3T5aYTdsV9genP-OKuejLJvHTzZgGWU71w7QOxbua18P-ZpcVHYb8OY0x-Rzlq2nz_Hydb6YPi7jgjHaxjlFLYpCcY3ArbJUWwmKygQVU0qrQluVSqhKzCkUZWoVVTlPSq1yAZUWyZjcH-823v10GFqzcZ3f9y8N6wVIAMWgp-BIFd6F4LEyja931v8aCmbwZnpvZvBmTt76yt2xUiPiP64lpzRlyR-fQGf-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2652700820</pqid></control><display><type>article</type><title>Spatial-Temporal Feature Fusion Neural Network for EEG-Based Emotion Recognition</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Zhe ; Wang, Yongxiong ; Zhang, Jiapeng ; Hu, Chuanfei ; Yin, Zhong ; Song, Yu</creator><creatorcontrib>Wang, Zhe ; Wang, Yongxiong ; Zhang, Jiapeng ; Hu, Chuanfei ; Yin, Zhong ; Song, Yu</creatorcontrib><description>The temporal and spatial information of electroencephalogram (EEG) are essential for the emotion recognition model to learn the discriminative features. Hence, we propose a novel hybrid spatial-temporal feature fusion neural network (STFFNN) to extract the discriminative features and integrate complementary information. The generated power topographic maps, which capture dependencies among the electrodes, are fed to convolutional neural network (CNN) for spatial feature learning. Furthermore, instance normalizations (INs) and batch normalizations (BNs) within the CNN are appropriately combined to alleviate the individual difference and preserve the domain-invariant information. Meanwhile, a feedforward network is adopted for temporal feature learning. Due to the high dimensionality of EEG features, we propose a grid-search-based configurational optimization method to robustly reduce the dimensionality. Finally, inspired by the multimodal fusion strategies that leverage the complementarity of data to obtain more robust predictions, we utilize a bidirectional long short-term memory (Bi-LSTM) network for temporal and spatial feature fusion. To validate the effectiveness of the proposed method, the tenfold cross-validation experiments and subject-dependent experiments are both conducted on the DEAP database. The experimental results demonstrate that the proposed method achieves outstanding performance in emotion recognition with arousal and valence level.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2022.3165280</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Arousal ; Artificial neural networks ; Convolutional neural networks ; Dimensionality reduction ; Electrodes ; electroencephalogram (EEG) ; Electroencephalography ; Emotion recognition ; Emotions ; Entropy ; Feature extraction ; information fusion ; Machine learning ; Neural networks ; Optimization ; Representation learning ; Spatial data ; spatial dependencies learning ; Topographic maps</subject><ispartof>IEEE transactions on instrumentation and measurement, 2022, Vol.71, p.1-12</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c221t-b1e96cc859e05a8a19a708173e828898c9a8470fdeb10cd4a818b53d98b60f963</citedby><cites>FETCH-LOGICAL-c221t-b1e96cc859e05a8a19a708173e828898c9a8470fdeb10cd4a818b53d98b60f963</cites><orcidid>0000-0002-3242-0857 ; 0000-0002-9295-7795 ; 0000-0003-1669-9429 ; 0000-0003-0680-781X ; 0000-0002-6233-1927</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9751142$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4009,27902,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9751142$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Zhe</creatorcontrib><creatorcontrib>Wang, Yongxiong</creatorcontrib><creatorcontrib>Zhang, Jiapeng</creatorcontrib><creatorcontrib>Hu, Chuanfei</creatorcontrib><creatorcontrib>Yin, Zhong</creatorcontrib><creatorcontrib>Song, Yu</creatorcontrib><title>Spatial-Temporal Feature Fusion Neural Network for EEG-Based Emotion Recognition</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>The temporal and spatial information of electroencephalogram (EEG) are essential for the emotion recognition model to learn the discriminative features. Hence, we propose a novel hybrid spatial-temporal feature fusion neural network (STFFNN) to extract the discriminative features and integrate complementary information. The generated power topographic maps, which capture dependencies among the electrodes, are fed to convolutional neural network (CNN) for spatial feature learning. Furthermore, instance normalizations (INs) and batch normalizations (BNs) within the CNN are appropriately combined to alleviate the individual difference and preserve the domain-invariant information. Meanwhile, a feedforward network is adopted for temporal feature learning. Due to the high dimensionality of EEG features, we propose a grid-search-based configurational optimization method to robustly reduce the dimensionality. Finally, inspired by the multimodal fusion strategies that leverage the complementarity of data to obtain more robust predictions, we utilize a bidirectional long short-term memory (Bi-LSTM) network for temporal and spatial feature fusion. To validate the effectiveness of the proposed method, the tenfold cross-validation experiments and subject-dependent experiments are both conducted on the DEAP database. The experimental results demonstrate that the proposed method achieves outstanding performance in emotion recognition with arousal and valence level.</description><subject>Arousal</subject><subject>Artificial neural networks</subject><subject>Convolutional neural networks</subject><subject>Dimensionality reduction</subject><subject>Electrodes</subject><subject>electroencephalogram (EEG)</subject><subject>Electroencephalography</subject><subject>Emotion recognition</subject><subject>Emotions</subject><subject>Entropy</subject><subject>Feature extraction</subject><subject>information fusion</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Representation learning</subject><subject>Spatial data</subject><subject>spatial dependencies learning</subject><subject>Topographic maps</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFbvgpeA59TZTfbrqCWthVpF63nZJBNJbbtxN6H4701o8TQvw_POwEPILYUJpaAf1ouXCQPGJgkVnCk4IyPKuYy1EOycjACoinXKxSW5CmEDAFKkckTePhrb1nYbr3HXOG-30Qxt23mMZl2o3T5aYTdsV9genP-OKuejLJvHTzZgGWU71w7QOxbua18P-ZpcVHYb8OY0x-Rzlq2nz_Hydb6YPi7jgjHaxjlFLYpCcY3ArbJUWwmKygQVU0qrQluVSqhKzCkUZWoVVTlPSq1yAZUWyZjcH-823v10GFqzcZ3f9y8N6wVIAMWgp-BIFd6F4LEyja931v8aCmbwZnpvZvBmTt76yt2xUiPiP64lpzRlyR-fQGf-</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Wang, Zhe</creator><creator>Wang, Yongxiong</creator><creator>Zhang, Jiapeng</creator><creator>Hu, Chuanfei</creator><creator>Yin, Zhong</creator><creator>Song, Yu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3242-0857</orcidid><orcidid>https://orcid.org/0000-0002-9295-7795</orcidid><orcidid>https://orcid.org/0000-0003-1669-9429</orcidid><orcidid>https://orcid.org/0000-0003-0680-781X</orcidid><orcidid>https://orcid.org/0000-0002-6233-1927</orcidid></search><sort><creationdate>2022</creationdate><title>Spatial-Temporal Feature Fusion Neural Network for EEG-Based Emotion Recognition</title><author>Wang, Zhe ; Wang, Yongxiong ; Zhang, Jiapeng ; Hu, Chuanfei ; Yin, Zhong ; Song, Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-b1e96cc859e05a8a19a708173e828898c9a8470fdeb10cd4a818b53d98b60f963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Arousal</topic><topic>Artificial neural networks</topic><topic>Convolutional neural networks</topic><topic>Dimensionality reduction</topic><topic>Electrodes</topic><topic>electroencephalogram (EEG)</topic><topic>Electroencephalography</topic><topic>Emotion recognition</topic><topic>Emotions</topic><topic>Entropy</topic><topic>Feature extraction</topic><topic>information fusion</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Representation learning</topic><topic>Spatial data</topic><topic>spatial dependencies learning</topic><topic>Topographic maps</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zhe</creatorcontrib><creatorcontrib>Wang, Yongxiong</creatorcontrib><creatorcontrib>Zhang, Jiapeng</creatorcontrib><creatorcontrib>Hu, Chuanfei</creatorcontrib><creatorcontrib>Yin, Zhong</creatorcontrib><creatorcontrib>Song, Yu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Zhe</au><au>Wang, Yongxiong</au><au>Zhang, Jiapeng</au><au>Hu, Chuanfei</au><au>Yin, Zhong</au><au>Song, Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial-Temporal Feature Fusion Neural Network for EEG-Based Emotion Recognition</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2022</date><risdate>2022</risdate><volume>71</volume><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>The temporal and spatial information of electroencephalogram (EEG) are essential for the emotion recognition model to learn the discriminative features. Hence, we propose a novel hybrid spatial-temporal feature fusion neural network (STFFNN) to extract the discriminative features and integrate complementary information. The generated power topographic maps, which capture dependencies among the electrodes, are fed to convolutional neural network (CNN) for spatial feature learning. Furthermore, instance normalizations (INs) and batch normalizations (BNs) within the CNN are appropriately combined to alleviate the individual difference and preserve the domain-invariant information. Meanwhile, a feedforward network is adopted for temporal feature learning. Due to the high dimensionality of EEG features, we propose a grid-search-based configurational optimization method to robustly reduce the dimensionality. Finally, inspired by the multimodal fusion strategies that leverage the complementarity of data to obtain more robust predictions, we utilize a bidirectional long short-term memory (Bi-LSTM) network for temporal and spatial feature fusion. To validate the effectiveness of the proposed method, the tenfold cross-validation experiments and subject-dependent experiments are both conducted on the DEAP database. The experimental results demonstrate that the proposed method achieves outstanding performance in emotion recognition with arousal and valence level.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2022.3165280</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3242-0857</orcidid><orcidid>https://orcid.org/0000-0002-9295-7795</orcidid><orcidid>https://orcid.org/0000-0003-1669-9429</orcidid><orcidid>https://orcid.org/0000-0003-0680-781X</orcidid><orcidid>https://orcid.org/0000-0002-6233-1927</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9456 |
ispartof | IEEE transactions on instrumentation and measurement, 2022, Vol.71, p.1-12 |
issn | 0018-9456 1557-9662 |
language | eng |
recordid | cdi_ieee_primary_9751142 |
source | IEEE Electronic Library (IEL) |
subjects | Arousal Artificial neural networks Convolutional neural networks Dimensionality reduction Electrodes electroencephalogram (EEG) Electroencephalography Emotion recognition Emotions Entropy Feature extraction information fusion Machine learning Neural networks Optimization Representation learning Spatial data spatial dependencies learning Topographic maps |
title | Spatial-Temporal Feature Fusion Neural Network for EEG-Based Emotion Recognition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T10%3A43%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial-Temporal%20Feature%20Fusion%20Neural%20Network%20for%20EEG-Based%20Emotion%20Recognition&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Wang,%20Zhe&rft.date=2022&rft.volume=71&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2022.3165280&rft_dat=%3Cproquest_RIE%3E2652700820%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2652700820&rft_id=info:pmid/&rft_ieee_id=9751142&rfr_iscdi=true |