Power Flow Management With Q-Learning for a Grid Integrated Photovoltaic and Energy Storage System

This article develops a fuzzy Q-learning (FQL) approach-based power flow management algorithm for a single-phase grid-connected (GC) photovoltaic (PV) system with an energy storage unit (ESU). The FQL coordinates the PV power generation, which is based on the mission profile, the state of charge (SO...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of emerging and selected topics in power electronics 2022-10, Vol.10 (5), p.5762-5772, Article 5762
Hauptverfasser: Khan, Mohammed Ali, Haque, Ahteshamul, Kurukuru, V. S. Bharath
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5772
container_issue 5
container_start_page 5762
container_title IEEE journal of emerging and selected topics in power electronics
container_volume 10
creator Khan, Mohammed Ali
Haque, Ahteshamul
Kurukuru, V. S. Bharath
description This article develops a fuzzy Q-learning (FQL) approach-based power flow management algorithm for a single-phase grid-connected (GC) photovoltaic (PV) system with an energy storage unit (ESU). The FQL coordinates the PV power generation, which is based on the mission profile, the state of charge (SOC) of ESU, and the load profile such that a power balance is achieved in the network. Furthermore, the transition between standalone (SA) and GC modes during the power flow management is achieved using a proportional capacitor current feedback. While operating in the SA mode, the control action for the load voltage is achieved by an outer current loop. This combination of coordinated and transition control achieves power balance and smooth transition between the SA and GC modes. To verify the effectiveness of the proposed control strategy, a 4 - kWp PV system is operated along with an ESU in both SA and GC modes for a varying mission and load profile. The simulation and experimental results validated the multifunctional features of the proposed method.
doi_str_mv 10.1109/JESTPE.2022.3165173
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9750098</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9750098</ieee_id><sourcerecordid>2721428113</sourcerecordid><originalsourceid>FETCH-LOGICAL-c227t-fac738e1bd2790ccdb25efda2ad7be599e112aafad82df7dfdc78eac1b4397463</originalsourceid><addsrcrecordid>eNqFkMFOAjEQhjdGEwnyBFyaeF7cdlnaHg0BxGDEgPG4mW1noQRa7BYJb--SJRy8OJeZw__9k3xR1KVJj9JEPr2OFsv5qMcSxnopHWSUpzdRi9GBiAdcZLfXm_P7qFNVm6QewTLJRSsq5u6Inoy37kjewMIKd2gD-TJhTT7iGYK3xq5I6TwBMvFGk6kNuPIQUJP52gX347YBjCJgNRlZ9KsTWQTn6yayOFUBdw_RXQnbCjuX3Y4-x6Pl8CWevU-mw-dZrBjjIS5B8VQgLTTjMlFKFyzDUgMDzQvMpERKGUAJWjBdcl1qxQWCokU_lbw_SNvRY9O79-77gFXIN-7gbf0yZ5zRPhOUpnUqbVLKu6ryWOZ7b3bgTzlN8rPPvPGZn33mF581Jf9QygQIxtngwWz_YbsNaxDx-k3yLEmkSH8BuD2FaA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2721428113</pqid></control><display><type>article</type><title>Power Flow Management With Q-Learning for a Grid Integrated Photovoltaic and Energy Storage System</title><source>IEEE Electronic Library (IEL)</source><creator>Khan, Mohammed Ali ; Haque, Ahteshamul ; Kurukuru, V. S. Bharath</creator><creatorcontrib>Khan, Mohammed Ali ; Haque, Ahteshamul ; Kurukuru, V. S. Bharath</creatorcontrib><description>This article develops a fuzzy Q-learning (FQL) approach-based power flow management algorithm for a single-phase grid-connected (GC) photovoltaic (PV) system with an energy storage unit (ESU). The FQL coordinates the PV power generation, which is based on the mission profile, the state of charge (SOC) of ESU, and the load profile such that a power balance is achieved in the network. Furthermore, the transition between standalone (SA) and GC modes during the power flow management is achieved using a proportional capacitor current feedback. While operating in the SA mode, the control action for the load voltage is achieved by an outer current loop. This combination of coordinated and transition control achieves power balance and smooth transition between the SA and GC modes. To verify the effectiveness of the proposed control strategy, a 4 - kWp PV system is operated along with an ESU in both SA and GC modes for a varying mission and load profile. The simulation and experimental results validated the multifunctional features of the proposed method.</description><identifier>ISSN: 2168-6777</identifier><identifier>ISSN: 2168-6785</identifier><identifier>EISSN: 2168-6785</identifier><identifier>DOI: 10.1109/JESTPE.2022.3165173</identifier><identifier>CODEN: IJESN2</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Batteries ; Energy management ; Energy management system ; Energy storage ; grid-connected (GC) ; Inverters ; Load flow ; Machine learning ; Microgrids ; photovoltaic (PV) systems ; Photovoltaic cells ; Power flow ; standalone (SA) ; State of charge ; Storage units ; transition control ; Voltage control</subject><ispartof>IEEE journal of emerging and selected topics in power electronics, 2022-10, Vol.10 (5), p.5762-5772, Article 5762</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c227t-fac738e1bd2790ccdb25efda2ad7be599e112aafad82df7dfdc78eac1b4397463</citedby><cites>FETCH-LOGICAL-c227t-fac738e1bd2790ccdb25efda2ad7be599e112aafad82df7dfdc78eac1b4397463</cites><orcidid>0000-0002-8998-3861 ; 0000-0003-3695-7835 ; 0000-0002-0476-3991</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9750098$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9750098$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Khan, Mohammed Ali</creatorcontrib><creatorcontrib>Haque, Ahteshamul</creatorcontrib><creatorcontrib>Kurukuru, V. S. Bharath</creatorcontrib><title>Power Flow Management With Q-Learning for a Grid Integrated Photovoltaic and Energy Storage System</title><title>IEEE journal of emerging and selected topics in power electronics</title><addtitle>JESTPE</addtitle><description>This article develops a fuzzy Q-learning (FQL) approach-based power flow management algorithm for a single-phase grid-connected (GC) photovoltaic (PV) system with an energy storage unit (ESU). The FQL coordinates the PV power generation, which is based on the mission profile, the state of charge (SOC) of ESU, and the load profile such that a power balance is achieved in the network. Furthermore, the transition between standalone (SA) and GC modes during the power flow management is achieved using a proportional capacitor current feedback. While operating in the SA mode, the control action for the load voltage is achieved by an outer current loop. This combination of coordinated and transition control achieves power balance and smooth transition between the SA and GC modes. To verify the effectiveness of the proposed control strategy, a 4 - kWp PV system is operated along with an ESU in both SA and GC modes for a varying mission and load profile. The simulation and experimental results validated the multifunctional features of the proposed method.</description><subject>Algorithms</subject><subject>Batteries</subject><subject>Energy management</subject><subject>Energy management system</subject><subject>Energy storage</subject><subject>grid-connected (GC)</subject><subject>Inverters</subject><subject>Load flow</subject><subject>Machine learning</subject><subject>Microgrids</subject><subject>photovoltaic (PV) systems</subject><subject>Photovoltaic cells</subject><subject>Power flow</subject><subject>standalone (SA)</subject><subject>State of charge</subject><subject>Storage units</subject><subject>transition control</subject><subject>Voltage control</subject><issn>2168-6777</issn><issn>2168-6785</issn><issn>2168-6785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkMFOAjEQhjdGEwnyBFyaeF7cdlnaHg0BxGDEgPG4mW1noQRa7BYJb--SJRy8OJeZw__9k3xR1KVJj9JEPr2OFsv5qMcSxnopHWSUpzdRi9GBiAdcZLfXm_P7qFNVm6QewTLJRSsq5u6Inoy37kjewMIKd2gD-TJhTT7iGYK3xq5I6TwBMvFGk6kNuPIQUJP52gX347YBjCJgNRlZ9KsTWQTn6yayOFUBdw_RXQnbCjuX3Y4-x6Pl8CWevU-mw-dZrBjjIS5B8VQgLTTjMlFKFyzDUgMDzQvMpERKGUAJWjBdcl1qxQWCokU_lbw_SNvRY9O79-77gFXIN-7gbf0yZ5zRPhOUpnUqbVLKu6ryWOZ7b3bgTzlN8rPPvPGZn33mF581Jf9QygQIxtngwWz_YbsNaxDx-k3yLEmkSH8BuD2FaA</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Khan, Mohammed Ali</creator><creator>Haque, Ahteshamul</creator><creator>Kurukuru, V. S. Bharath</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8998-3861</orcidid><orcidid>https://orcid.org/0000-0003-3695-7835</orcidid><orcidid>https://orcid.org/0000-0002-0476-3991</orcidid></search><sort><creationdate>20221001</creationdate><title>Power Flow Management With Q-Learning for a Grid Integrated Photovoltaic and Energy Storage System</title><author>Khan, Mohammed Ali ; Haque, Ahteshamul ; Kurukuru, V. S. Bharath</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c227t-fac738e1bd2790ccdb25efda2ad7be599e112aafad82df7dfdc78eac1b4397463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Batteries</topic><topic>Energy management</topic><topic>Energy management system</topic><topic>Energy storage</topic><topic>grid-connected (GC)</topic><topic>Inverters</topic><topic>Load flow</topic><topic>Machine learning</topic><topic>Microgrids</topic><topic>photovoltaic (PV) systems</topic><topic>Photovoltaic cells</topic><topic>Power flow</topic><topic>standalone (SA)</topic><topic>State of charge</topic><topic>Storage units</topic><topic>transition control</topic><topic>Voltage control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khan, Mohammed Ali</creatorcontrib><creatorcontrib>Haque, Ahteshamul</creatorcontrib><creatorcontrib>Kurukuru, V. S. Bharath</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of emerging and selected topics in power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Khan, Mohammed Ali</au><au>Haque, Ahteshamul</au><au>Kurukuru, V. S. Bharath</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Power Flow Management With Q-Learning for a Grid Integrated Photovoltaic and Energy Storage System</atitle><jtitle>IEEE journal of emerging and selected topics in power electronics</jtitle><stitle>JESTPE</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>10</volume><issue>5</issue><spage>5762</spage><epage>5772</epage><pages>5762-5772</pages><artnum>5762</artnum><issn>2168-6777</issn><issn>2168-6785</issn><eissn>2168-6785</eissn><coden>IJESN2</coden><abstract>This article develops a fuzzy Q-learning (FQL) approach-based power flow management algorithm for a single-phase grid-connected (GC) photovoltaic (PV) system with an energy storage unit (ESU). The FQL coordinates the PV power generation, which is based on the mission profile, the state of charge (SOC) of ESU, and the load profile such that a power balance is achieved in the network. Furthermore, the transition between standalone (SA) and GC modes during the power flow management is achieved using a proportional capacitor current feedback. While operating in the SA mode, the control action for the load voltage is achieved by an outer current loop. This combination of coordinated and transition control achieves power balance and smooth transition between the SA and GC modes. To verify the effectiveness of the proposed control strategy, a 4 - kWp PV system is operated along with an ESU in both SA and GC modes for a varying mission and load profile. The simulation and experimental results validated the multifunctional features of the proposed method.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JESTPE.2022.3165173</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8998-3861</orcidid><orcidid>https://orcid.org/0000-0003-3695-7835</orcidid><orcidid>https://orcid.org/0000-0002-0476-3991</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-6777
ispartof IEEE journal of emerging and selected topics in power electronics, 2022-10, Vol.10 (5), p.5762-5772, Article 5762
issn 2168-6777
2168-6785
2168-6785
language eng
recordid cdi_ieee_primary_9750098
source IEEE Electronic Library (IEL)
subjects Algorithms
Batteries
Energy management
Energy management system
Energy storage
grid-connected (GC)
Inverters
Load flow
Machine learning
Microgrids
photovoltaic (PV) systems
Photovoltaic cells
Power flow
standalone (SA)
State of charge
Storage units
transition control
Voltage control
title Power Flow Management With Q-Learning for a Grid Integrated Photovoltaic and Energy Storage System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T05%3A33%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Power%20Flow%20Management%20With%20Q-Learning%20for%20a%20Grid%20Integrated%20Photovoltaic%20and%20Energy%20Storage%20System&rft.jtitle=IEEE%20journal%20of%20emerging%20and%20selected%20topics%20in%20power%20electronics&rft.au=Khan,%20Mohammed%20Ali&rft.date=2022-10-01&rft.volume=10&rft.issue=5&rft.spage=5762&rft.epage=5772&rft.pages=5762-5772&rft.artnum=5762&rft.issn=2168-6777&rft.eissn=2168-6785&rft.coden=IJESN2&rft_id=info:doi/10.1109/JESTPE.2022.3165173&rft_dat=%3Cproquest_RIE%3E2721428113%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2721428113&rft_id=info:pmid/&rft_ieee_id=9750098&rfr_iscdi=true