Power Flow Management With Q-Learning for a Grid Integrated Photovoltaic and Energy Storage System
This article develops a fuzzy Q-learning (FQL) approach-based power flow management algorithm for a single-phase grid-connected (GC) photovoltaic (PV) system with an energy storage unit (ESU). The FQL coordinates the PV power generation, which is based on the mission profile, the state of charge (SO...
Gespeichert in:
Veröffentlicht in: | IEEE journal of emerging and selected topics in power electronics 2022-10, Vol.10 (5), p.5762-5772, Article 5762 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5772 |
---|---|
container_issue | 5 |
container_start_page | 5762 |
container_title | IEEE journal of emerging and selected topics in power electronics |
container_volume | 10 |
creator | Khan, Mohammed Ali Haque, Ahteshamul Kurukuru, V. S. Bharath |
description | This article develops a fuzzy Q-learning (FQL) approach-based power flow management algorithm for a single-phase grid-connected (GC) photovoltaic (PV) system with an energy storage unit (ESU). The FQL coordinates the PV power generation, which is based on the mission profile, the state of charge (SOC) of ESU, and the load profile such that a power balance is achieved in the network. Furthermore, the transition between standalone (SA) and GC modes during the power flow management is achieved using a proportional capacitor current feedback. While operating in the SA mode, the control action for the load voltage is achieved by an outer current loop. This combination of coordinated and transition control achieves power balance and smooth transition between the SA and GC modes. To verify the effectiveness of the proposed control strategy, a 4 - kWp PV system is operated along with an ESU in both SA and GC modes for a varying mission and load profile. The simulation and experimental results validated the multifunctional features of the proposed method. |
doi_str_mv | 10.1109/JESTPE.2022.3165173 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9750098</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9750098</ieee_id><sourcerecordid>2721428113</sourcerecordid><originalsourceid>FETCH-LOGICAL-c227t-fac738e1bd2790ccdb25efda2ad7be599e112aafad82df7dfdc78eac1b4397463</originalsourceid><addsrcrecordid>eNqFkMFOAjEQhjdGEwnyBFyaeF7cdlnaHg0BxGDEgPG4mW1noQRa7BYJb--SJRy8OJeZw__9k3xR1KVJj9JEPr2OFsv5qMcSxnopHWSUpzdRi9GBiAdcZLfXm_P7qFNVm6QewTLJRSsq5u6Inoy37kjewMIKd2gD-TJhTT7iGYK3xq5I6TwBMvFGk6kNuPIQUJP52gX347YBjCJgNRlZ9KsTWQTn6yayOFUBdw_RXQnbCjuX3Y4-x6Pl8CWevU-mw-dZrBjjIS5B8VQgLTTjMlFKFyzDUgMDzQvMpERKGUAJWjBdcl1qxQWCokU_lbw_SNvRY9O79-77gFXIN-7gbf0yZ5zRPhOUpnUqbVLKu6ryWOZ7b3bgTzlN8rPPvPGZn33mF581Jf9QygQIxtngwWz_YbsNaxDx-k3yLEmkSH8BuD2FaA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2721428113</pqid></control><display><type>article</type><title>Power Flow Management With Q-Learning for a Grid Integrated Photovoltaic and Energy Storage System</title><source>IEEE Electronic Library (IEL)</source><creator>Khan, Mohammed Ali ; Haque, Ahteshamul ; Kurukuru, V. S. Bharath</creator><creatorcontrib>Khan, Mohammed Ali ; Haque, Ahteshamul ; Kurukuru, V. S. Bharath</creatorcontrib><description>This article develops a fuzzy Q-learning (FQL) approach-based power flow management algorithm for a single-phase grid-connected (GC) photovoltaic (PV) system with an energy storage unit (ESU). The FQL coordinates the PV power generation, which is based on the mission profile, the state of charge (SOC) of ESU, and the load profile such that a power balance is achieved in the network. Furthermore, the transition between standalone (SA) and GC modes during the power flow management is achieved using a proportional capacitor current feedback. While operating in the SA mode, the control action for the load voltage is achieved by an outer current loop. This combination of coordinated and transition control achieves power balance and smooth transition between the SA and GC modes. To verify the effectiveness of the proposed control strategy, a 4 - kWp PV system is operated along with an ESU in both SA and GC modes for a varying mission and load profile. The simulation and experimental results validated the multifunctional features of the proposed method.</description><identifier>ISSN: 2168-6777</identifier><identifier>ISSN: 2168-6785</identifier><identifier>EISSN: 2168-6785</identifier><identifier>DOI: 10.1109/JESTPE.2022.3165173</identifier><identifier>CODEN: IJESN2</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Batteries ; Energy management ; Energy management system ; Energy storage ; grid-connected (GC) ; Inverters ; Load flow ; Machine learning ; Microgrids ; photovoltaic (PV) systems ; Photovoltaic cells ; Power flow ; standalone (SA) ; State of charge ; Storage units ; transition control ; Voltage control</subject><ispartof>IEEE journal of emerging and selected topics in power electronics, 2022-10, Vol.10 (5), p.5762-5772, Article 5762</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c227t-fac738e1bd2790ccdb25efda2ad7be599e112aafad82df7dfdc78eac1b4397463</citedby><cites>FETCH-LOGICAL-c227t-fac738e1bd2790ccdb25efda2ad7be599e112aafad82df7dfdc78eac1b4397463</cites><orcidid>0000-0002-8998-3861 ; 0000-0003-3695-7835 ; 0000-0002-0476-3991</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9750098$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9750098$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Khan, Mohammed Ali</creatorcontrib><creatorcontrib>Haque, Ahteshamul</creatorcontrib><creatorcontrib>Kurukuru, V. S. Bharath</creatorcontrib><title>Power Flow Management With Q-Learning for a Grid Integrated Photovoltaic and Energy Storage System</title><title>IEEE journal of emerging and selected topics in power electronics</title><addtitle>JESTPE</addtitle><description>This article develops a fuzzy Q-learning (FQL) approach-based power flow management algorithm for a single-phase grid-connected (GC) photovoltaic (PV) system with an energy storage unit (ESU). The FQL coordinates the PV power generation, which is based on the mission profile, the state of charge (SOC) of ESU, and the load profile such that a power balance is achieved in the network. Furthermore, the transition between standalone (SA) and GC modes during the power flow management is achieved using a proportional capacitor current feedback. While operating in the SA mode, the control action for the load voltage is achieved by an outer current loop. This combination of coordinated and transition control achieves power balance and smooth transition between the SA and GC modes. To verify the effectiveness of the proposed control strategy, a 4 - kWp PV system is operated along with an ESU in both SA and GC modes for a varying mission and load profile. The simulation and experimental results validated the multifunctional features of the proposed method.</description><subject>Algorithms</subject><subject>Batteries</subject><subject>Energy management</subject><subject>Energy management system</subject><subject>Energy storage</subject><subject>grid-connected (GC)</subject><subject>Inverters</subject><subject>Load flow</subject><subject>Machine learning</subject><subject>Microgrids</subject><subject>photovoltaic (PV) systems</subject><subject>Photovoltaic cells</subject><subject>Power flow</subject><subject>standalone (SA)</subject><subject>State of charge</subject><subject>Storage units</subject><subject>transition control</subject><subject>Voltage control</subject><issn>2168-6777</issn><issn>2168-6785</issn><issn>2168-6785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkMFOAjEQhjdGEwnyBFyaeF7cdlnaHg0BxGDEgPG4mW1noQRa7BYJb--SJRy8OJeZw__9k3xR1KVJj9JEPr2OFsv5qMcSxnopHWSUpzdRi9GBiAdcZLfXm_P7qFNVm6QewTLJRSsq5u6Inoy37kjewMIKd2gD-TJhTT7iGYK3xq5I6TwBMvFGk6kNuPIQUJP52gX347YBjCJgNRlZ9KsTWQTn6yayOFUBdw_RXQnbCjuX3Y4-x6Pl8CWevU-mw-dZrBjjIS5B8VQgLTTjMlFKFyzDUgMDzQvMpERKGUAJWjBdcl1qxQWCokU_lbw_SNvRY9O79-77gFXIN-7gbf0yZ5zRPhOUpnUqbVLKu6ryWOZ7b3bgTzlN8rPPvPGZn33mF581Jf9QygQIxtngwWz_YbsNaxDx-k3yLEmkSH8BuD2FaA</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Khan, Mohammed Ali</creator><creator>Haque, Ahteshamul</creator><creator>Kurukuru, V. S. Bharath</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8998-3861</orcidid><orcidid>https://orcid.org/0000-0003-3695-7835</orcidid><orcidid>https://orcid.org/0000-0002-0476-3991</orcidid></search><sort><creationdate>20221001</creationdate><title>Power Flow Management With Q-Learning for a Grid Integrated Photovoltaic and Energy Storage System</title><author>Khan, Mohammed Ali ; Haque, Ahteshamul ; Kurukuru, V. S. Bharath</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c227t-fac738e1bd2790ccdb25efda2ad7be599e112aafad82df7dfdc78eac1b4397463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Batteries</topic><topic>Energy management</topic><topic>Energy management system</topic><topic>Energy storage</topic><topic>grid-connected (GC)</topic><topic>Inverters</topic><topic>Load flow</topic><topic>Machine learning</topic><topic>Microgrids</topic><topic>photovoltaic (PV) systems</topic><topic>Photovoltaic cells</topic><topic>Power flow</topic><topic>standalone (SA)</topic><topic>State of charge</topic><topic>Storage units</topic><topic>transition control</topic><topic>Voltage control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khan, Mohammed Ali</creatorcontrib><creatorcontrib>Haque, Ahteshamul</creatorcontrib><creatorcontrib>Kurukuru, V. S. Bharath</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of emerging and selected topics in power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Khan, Mohammed Ali</au><au>Haque, Ahteshamul</au><au>Kurukuru, V. S. Bharath</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Power Flow Management With Q-Learning for a Grid Integrated Photovoltaic and Energy Storage System</atitle><jtitle>IEEE journal of emerging and selected topics in power electronics</jtitle><stitle>JESTPE</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>10</volume><issue>5</issue><spage>5762</spage><epage>5772</epage><pages>5762-5772</pages><artnum>5762</artnum><issn>2168-6777</issn><issn>2168-6785</issn><eissn>2168-6785</eissn><coden>IJESN2</coden><abstract>This article develops a fuzzy Q-learning (FQL) approach-based power flow management algorithm for a single-phase grid-connected (GC) photovoltaic (PV) system with an energy storage unit (ESU). The FQL coordinates the PV power generation, which is based on the mission profile, the state of charge (SOC) of ESU, and the load profile such that a power balance is achieved in the network. Furthermore, the transition between standalone (SA) and GC modes during the power flow management is achieved using a proportional capacitor current feedback. While operating in the SA mode, the control action for the load voltage is achieved by an outer current loop. This combination of coordinated and transition control achieves power balance and smooth transition between the SA and GC modes. To verify the effectiveness of the proposed control strategy, a 4 - kWp PV system is operated along with an ESU in both SA and GC modes for a varying mission and load profile. The simulation and experimental results validated the multifunctional features of the proposed method.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JESTPE.2022.3165173</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8998-3861</orcidid><orcidid>https://orcid.org/0000-0003-3695-7835</orcidid><orcidid>https://orcid.org/0000-0002-0476-3991</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2168-6777 |
ispartof | IEEE journal of emerging and selected topics in power electronics, 2022-10, Vol.10 (5), p.5762-5772, Article 5762 |
issn | 2168-6777 2168-6785 2168-6785 |
language | eng |
recordid | cdi_ieee_primary_9750098 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Batteries Energy management Energy management system Energy storage grid-connected (GC) Inverters Load flow Machine learning Microgrids photovoltaic (PV) systems Photovoltaic cells Power flow standalone (SA) State of charge Storage units transition control Voltage control |
title | Power Flow Management With Q-Learning for a Grid Integrated Photovoltaic and Energy Storage System |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T05%3A33%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Power%20Flow%20Management%20With%20Q-Learning%20for%20a%20Grid%20Integrated%20Photovoltaic%20and%20Energy%20Storage%20System&rft.jtitle=IEEE%20journal%20of%20emerging%20and%20selected%20topics%20in%20power%20electronics&rft.au=Khan,%20Mohammed%20Ali&rft.date=2022-10-01&rft.volume=10&rft.issue=5&rft.spage=5762&rft.epage=5772&rft.pages=5762-5772&rft.artnum=5762&rft.issn=2168-6777&rft.eissn=2168-6785&rft.coden=IJESN2&rft_id=info:doi/10.1109/JESTPE.2022.3165173&rft_dat=%3Cproquest_RIE%3E2721428113%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2721428113&rft_id=info:pmid/&rft_ieee_id=9750098&rfr_iscdi=true |