Implementation and Testing of a Retrodirective Cross-Eye Jammer
One of the few electronic attack techniques that can deceive radars in angle is cross-eye jamming, which mimics the naturally-occurring phenomenon glint. The extreme tolerance requirements of cross-eye jamming mean that a retrodirective implementation is required, but published measurements of cross...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on aerospace and electronic systems 2022-10, Vol.58 (5), p.4486-4494 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | One of the few electronic attack techniques that can deceive radars in angle is cross-eye jamming, which mimics the naturally-occurring phenomenon glint. The extreme tolerance requirements of cross-eye jamming mean that a retrodirective implementation is required, but published measurements of cross-eye jamming either ignore the retrodirective implementation or only simulate it. The implementation of a retrodirective cross-eye jammer and its testing against a monopulse radar are described. A procedure for calibrating the jammer is outlined and is shown to be effective by achieving large angular errors. The measured results agree well with the extended analysis of cross-eye jamming and confirm that the implemented jammer is retrodirective. Specifically, the ability of a cross-eye jammer to generate an indicated angle that never becomes zero, thereby potentially breaking a tracking lock, is confirmed. |
---|---|
ISSN: | 0018-9251 1557-9603 |
DOI: | 10.1109/TAES.2022.3164017 |