Fully Distributed Model Predictive Control of Connected Automated Vehicles in Intersections: Theory and Vehicle Experiments

We propose a fully distributed control system architecture, amenable to in-vehicle implementation, that aims to safely coordinate connected and automated vehicles (CAVs) at road intersections. For control purposes, we build upon a fully distributed model predictive control approach, in which the age...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2022-10, Vol.23 (10), p.18288-18300
Hauptverfasser: Katriniok, Alexander, Rosarius, Benedikt, Mahonen, Petri
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18300
container_issue 10
container_start_page 18288
container_title IEEE transactions on intelligent transportation systems
container_volume 23
creator Katriniok, Alexander
Rosarius, Benedikt
Mahonen, Petri
description We propose a fully distributed control system architecture, amenable to in-vehicle implementation, that aims to safely coordinate connected and automated vehicles (CAVs) at road intersections. For control purposes, we build upon a fully distributed model predictive control approach, in which the agents solve a nonconvex optimal control problem (OCP) locally and synchronously, and exchange their optimized trajectories via vehicle-to-vehicle (V2V) communication. To accommodate a fast solution of the nonconvex OCPs, we apply the penalty convex-concave procedure which solves a convexified version of the original OCP. For experimental evaluation, we complement the predictive controller with a localization layer, being in charge of self-localization, and an estimator, which determines joint collision points with other agents. Experimental tests reveal the efficacy of the proposed control system architecture.
doi_str_mv 10.1109/TITS.2022.3162038
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9745747</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9745747</ieee_id><sourcerecordid>2723901445</sourcerecordid><originalsourceid>FETCH-LOGICAL-c223t-f030a398f63bf3b53362cee9ce4388c66169f35930e68eee97cdc97dea627ea3</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKc_QLwJeN2ZjyZtvBtz08FEweJt6dJTltE1M0nF4Z83ZbKrvOQ854MHoVtKJpQS9VAsi48JI4xNOJWM8PwMjagQeUIIledDZmmiiCCX6Mr7bfxNBaUj9Lvo2_aAn4wPzqz7ADV-tTW0-N1BbXQw34BntgvOttg2Q-xAD9S0D3ZXDekTNka34LHp8LIL4HwkjO38Iy42YN0BV92JwvOfPTizgy74a3TRVK2Hm_93jIrFvJi9JKu35-Vsuko0YzwkDeGk4ipvJF83fC04l0wDKA0pz3MtJZWq4UJxAjKHWMh0rVVWQyVZBhUfo_vj2L2zXz34UG5t77q4sWQZ4yqqSEWk6JHSznrvoCn38czKHUpKykFxOSguB8Xlv-LYc3fsMXHtiVdZKrI0439-wXnI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2723901445</pqid></control><display><type>article</type><title>Fully Distributed Model Predictive Control of Connected Automated Vehicles in Intersections: Theory and Vehicle Experiments</title><source>IEEE Electronic Library (IEL)</source><creator>Katriniok, Alexander ; Rosarius, Benedikt ; Mahonen, Petri</creator><creatorcontrib>Katriniok, Alexander ; Rosarius, Benedikt ; Mahonen, Petri</creatorcontrib><description>We propose a fully distributed control system architecture, amenable to in-vehicle implementation, that aims to safely coordinate connected and automated vehicles (CAVs) at road intersections. For control purposes, we build upon a fully distributed model predictive control approach, in which the agents solve a nonconvex optimal control problem (OCP) locally and synchronously, and exchange their optimized trajectories via vehicle-to-vehicle (V2V) communication. To accommodate a fast solution of the nonconvex OCPs, we apply the penalty convex-concave procedure which solves a convexified version of the original OCP. For experimental evaluation, we complement the predictive controller with a localization layer, being in charge of self-localization, and an estimator, which determines joint collision points with other agents. Experimental tests reveal the efficacy of the proposed control system architecture.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2022.3162038</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Automation ; automotive control ; autonomous vehicles ; Computer architecture ; Control systems ; Decentralized control ; Distributed control ; distributed optimization ; Location awareness ; Optimal control ; Predictive control ; Roads ; Traffic intersections ; Trajectory ; Trajectory optimization</subject><ispartof>IEEE transactions on intelligent transportation systems, 2022-10, Vol.23 (10), p.18288-18300</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c223t-f030a398f63bf3b53362cee9ce4388c66169f35930e68eee97cdc97dea627ea3</citedby><cites>FETCH-LOGICAL-c223t-f030a398f63bf3b53362cee9ce4388c66169f35930e68eee97cdc97dea627ea3</cites><orcidid>0000-0001-6934-8636 ; 0000-0003-1137-7885</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9745747$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9745747$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Katriniok, Alexander</creatorcontrib><creatorcontrib>Rosarius, Benedikt</creatorcontrib><creatorcontrib>Mahonen, Petri</creatorcontrib><title>Fully Distributed Model Predictive Control of Connected Automated Vehicles in Intersections: Theory and Vehicle Experiments</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>We propose a fully distributed control system architecture, amenable to in-vehicle implementation, that aims to safely coordinate connected and automated vehicles (CAVs) at road intersections. For control purposes, we build upon a fully distributed model predictive control approach, in which the agents solve a nonconvex optimal control problem (OCP) locally and synchronously, and exchange their optimized trajectories via vehicle-to-vehicle (V2V) communication. To accommodate a fast solution of the nonconvex OCPs, we apply the penalty convex-concave procedure which solves a convexified version of the original OCP. For experimental evaluation, we complement the predictive controller with a localization layer, being in charge of self-localization, and an estimator, which determines joint collision points with other agents. Experimental tests reveal the efficacy of the proposed control system architecture.</description><subject>Automation</subject><subject>automotive control</subject><subject>autonomous vehicles</subject><subject>Computer architecture</subject><subject>Control systems</subject><subject>Decentralized control</subject><subject>Distributed control</subject><subject>distributed optimization</subject><subject>Location awareness</subject><subject>Optimal control</subject><subject>Predictive control</subject><subject>Roads</subject><subject>Traffic intersections</subject><subject>Trajectory</subject><subject>Trajectory optimization</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOKc_QLwJeN2ZjyZtvBtz08FEweJt6dJTltE1M0nF4Z83ZbKrvOQ854MHoVtKJpQS9VAsi48JI4xNOJWM8PwMjagQeUIIledDZmmiiCCX6Mr7bfxNBaUj9Lvo2_aAn4wPzqz7ADV-tTW0-N1BbXQw34BntgvOttg2Q-xAD9S0D3ZXDekTNka34LHp8LIL4HwkjO38Iy42YN0BV92JwvOfPTizgy74a3TRVK2Hm_93jIrFvJi9JKu35-Vsuko0YzwkDeGk4ipvJF83fC04l0wDKA0pz3MtJZWq4UJxAjKHWMh0rVVWQyVZBhUfo_vj2L2zXz34UG5t77q4sWQZ4yqqSEWk6JHSznrvoCn38czKHUpKykFxOSguB8Xlv-LYc3fsMXHtiVdZKrI0439-wXnI</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Katriniok, Alexander</creator><creator>Rosarius, Benedikt</creator><creator>Mahonen, Petri</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6934-8636</orcidid><orcidid>https://orcid.org/0000-0003-1137-7885</orcidid></search><sort><creationdate>20221001</creationdate><title>Fully Distributed Model Predictive Control of Connected Automated Vehicles in Intersections: Theory and Vehicle Experiments</title><author>Katriniok, Alexander ; Rosarius, Benedikt ; Mahonen, Petri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c223t-f030a398f63bf3b53362cee9ce4388c66169f35930e68eee97cdc97dea627ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Automation</topic><topic>automotive control</topic><topic>autonomous vehicles</topic><topic>Computer architecture</topic><topic>Control systems</topic><topic>Decentralized control</topic><topic>Distributed control</topic><topic>distributed optimization</topic><topic>Location awareness</topic><topic>Optimal control</topic><topic>Predictive control</topic><topic>Roads</topic><topic>Traffic intersections</topic><topic>Trajectory</topic><topic>Trajectory optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Katriniok, Alexander</creatorcontrib><creatorcontrib>Rosarius, Benedikt</creatorcontrib><creatorcontrib>Mahonen, Petri</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Katriniok, Alexander</au><au>Rosarius, Benedikt</au><au>Mahonen, Petri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fully Distributed Model Predictive Control of Connected Automated Vehicles in Intersections: Theory and Vehicle Experiments</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>23</volume><issue>10</issue><spage>18288</spage><epage>18300</epage><pages>18288-18300</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>We propose a fully distributed control system architecture, amenable to in-vehicle implementation, that aims to safely coordinate connected and automated vehicles (CAVs) at road intersections. For control purposes, we build upon a fully distributed model predictive control approach, in which the agents solve a nonconvex optimal control problem (OCP) locally and synchronously, and exchange their optimized trajectories via vehicle-to-vehicle (V2V) communication. To accommodate a fast solution of the nonconvex OCPs, we apply the penalty convex-concave procedure which solves a convexified version of the original OCP. For experimental evaluation, we complement the predictive controller with a localization layer, being in charge of self-localization, and an estimator, which determines joint collision points with other agents. Experimental tests reveal the efficacy of the proposed control system architecture.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2022.3162038</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6934-8636</orcidid><orcidid>https://orcid.org/0000-0003-1137-7885</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2022-10, Vol.23 (10), p.18288-18300
issn 1524-9050
1558-0016
language eng
recordid cdi_ieee_primary_9745747
source IEEE Electronic Library (IEL)
subjects Automation
automotive control
autonomous vehicles
Computer architecture
Control systems
Decentralized control
Distributed control
distributed optimization
Location awareness
Optimal control
Predictive control
Roads
Traffic intersections
Trajectory
Trajectory optimization
title Fully Distributed Model Predictive Control of Connected Automated Vehicles in Intersections: Theory and Vehicle Experiments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T16%3A35%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fully%20Distributed%20Model%20Predictive%20Control%20of%20Connected%20Automated%20Vehicles%20in%20Intersections:%20Theory%20and%20Vehicle%20Experiments&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Katriniok,%20Alexander&rft.date=2022-10-01&rft.volume=23&rft.issue=10&rft.spage=18288&rft.epage=18300&rft.pages=18288-18300&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2022.3162038&rft_dat=%3Cproquest_RIE%3E2723901445%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2723901445&rft_id=info:pmid/&rft_ieee_id=9745747&rfr_iscdi=true