Fully Distributed Model Predictive Control of Connected Automated Vehicles in Intersections: Theory and Vehicle Experiments
We propose a fully distributed control system architecture, amenable to in-vehicle implementation, that aims to safely coordinate connected and automated vehicles (CAVs) at road intersections. For control purposes, we build upon a fully distributed model predictive control approach, in which the age...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on intelligent transportation systems 2022-10, Vol.23 (10), p.18288-18300 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 18300 |
---|---|
container_issue | 10 |
container_start_page | 18288 |
container_title | IEEE transactions on intelligent transportation systems |
container_volume | 23 |
creator | Katriniok, Alexander Rosarius, Benedikt Mahonen, Petri |
description | We propose a fully distributed control system architecture, amenable to in-vehicle implementation, that aims to safely coordinate connected and automated vehicles (CAVs) at road intersections. For control purposes, we build upon a fully distributed model predictive control approach, in which the agents solve a nonconvex optimal control problem (OCP) locally and synchronously, and exchange their optimized trajectories via vehicle-to-vehicle (V2V) communication. To accommodate a fast solution of the nonconvex OCPs, we apply the penalty convex-concave procedure which solves a convexified version of the original OCP. For experimental evaluation, we complement the predictive controller with a localization layer, being in charge of self-localization, and an estimator, which determines joint collision points with other agents. Experimental tests reveal the efficacy of the proposed control system architecture. |
doi_str_mv | 10.1109/TITS.2022.3162038 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9745747</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9745747</ieee_id><sourcerecordid>2723901445</sourcerecordid><originalsourceid>FETCH-LOGICAL-c223t-f030a398f63bf3b53362cee9ce4388c66169f35930e68eee97cdc97dea627ea3</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKc_QLwJeN2ZjyZtvBtz08FEweJt6dJTltE1M0nF4Z83ZbKrvOQ854MHoVtKJpQS9VAsi48JI4xNOJWM8PwMjagQeUIIledDZmmiiCCX6Mr7bfxNBaUj9Lvo2_aAn4wPzqz7ADV-tTW0-N1BbXQw34BntgvOttg2Q-xAD9S0D3ZXDekTNka34LHp8LIL4HwkjO38Iy42YN0BV92JwvOfPTizgy74a3TRVK2Hm_93jIrFvJi9JKu35-Vsuko0YzwkDeGk4ipvJF83fC04l0wDKA0pz3MtJZWq4UJxAjKHWMh0rVVWQyVZBhUfo_vj2L2zXz34UG5t77q4sWQZ4yqqSEWk6JHSznrvoCn38czKHUpKykFxOSguB8Xlv-LYc3fsMXHtiVdZKrI0439-wXnI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2723901445</pqid></control><display><type>article</type><title>Fully Distributed Model Predictive Control of Connected Automated Vehicles in Intersections: Theory and Vehicle Experiments</title><source>IEEE Electronic Library (IEL)</source><creator>Katriniok, Alexander ; Rosarius, Benedikt ; Mahonen, Petri</creator><creatorcontrib>Katriniok, Alexander ; Rosarius, Benedikt ; Mahonen, Petri</creatorcontrib><description>We propose a fully distributed control system architecture, amenable to in-vehicle implementation, that aims to safely coordinate connected and automated vehicles (CAVs) at road intersections. For control purposes, we build upon a fully distributed model predictive control approach, in which the agents solve a nonconvex optimal control problem (OCP) locally and synchronously, and exchange their optimized trajectories via vehicle-to-vehicle (V2V) communication. To accommodate a fast solution of the nonconvex OCPs, we apply the penalty convex-concave procedure which solves a convexified version of the original OCP. For experimental evaluation, we complement the predictive controller with a localization layer, being in charge of self-localization, and an estimator, which determines joint collision points with other agents. Experimental tests reveal the efficacy of the proposed control system architecture.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2022.3162038</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Automation ; automotive control ; autonomous vehicles ; Computer architecture ; Control systems ; Decentralized control ; Distributed control ; distributed optimization ; Location awareness ; Optimal control ; Predictive control ; Roads ; Traffic intersections ; Trajectory ; Trajectory optimization</subject><ispartof>IEEE transactions on intelligent transportation systems, 2022-10, Vol.23 (10), p.18288-18300</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c223t-f030a398f63bf3b53362cee9ce4388c66169f35930e68eee97cdc97dea627ea3</citedby><cites>FETCH-LOGICAL-c223t-f030a398f63bf3b53362cee9ce4388c66169f35930e68eee97cdc97dea627ea3</cites><orcidid>0000-0001-6934-8636 ; 0000-0003-1137-7885</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9745747$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9745747$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Katriniok, Alexander</creatorcontrib><creatorcontrib>Rosarius, Benedikt</creatorcontrib><creatorcontrib>Mahonen, Petri</creatorcontrib><title>Fully Distributed Model Predictive Control of Connected Automated Vehicles in Intersections: Theory and Vehicle Experiments</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>We propose a fully distributed control system architecture, amenable to in-vehicle implementation, that aims to safely coordinate connected and automated vehicles (CAVs) at road intersections. For control purposes, we build upon a fully distributed model predictive control approach, in which the agents solve a nonconvex optimal control problem (OCP) locally and synchronously, and exchange their optimized trajectories via vehicle-to-vehicle (V2V) communication. To accommodate a fast solution of the nonconvex OCPs, we apply the penalty convex-concave procedure which solves a convexified version of the original OCP. For experimental evaluation, we complement the predictive controller with a localization layer, being in charge of self-localization, and an estimator, which determines joint collision points with other agents. Experimental tests reveal the efficacy of the proposed control system architecture.</description><subject>Automation</subject><subject>automotive control</subject><subject>autonomous vehicles</subject><subject>Computer architecture</subject><subject>Control systems</subject><subject>Decentralized control</subject><subject>Distributed control</subject><subject>distributed optimization</subject><subject>Location awareness</subject><subject>Optimal control</subject><subject>Predictive control</subject><subject>Roads</subject><subject>Traffic intersections</subject><subject>Trajectory</subject><subject>Trajectory optimization</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOKc_QLwJeN2ZjyZtvBtz08FEweJt6dJTltE1M0nF4Z83ZbKrvOQ854MHoVtKJpQS9VAsi48JI4xNOJWM8PwMjagQeUIIledDZmmiiCCX6Mr7bfxNBaUj9Lvo2_aAn4wPzqz7ADV-tTW0-N1BbXQw34BntgvOttg2Q-xAD9S0D3ZXDekTNka34LHp8LIL4HwkjO38Iy42YN0BV92JwvOfPTizgy74a3TRVK2Hm_93jIrFvJi9JKu35-Vsuko0YzwkDeGk4ipvJF83fC04l0wDKA0pz3MtJZWq4UJxAjKHWMh0rVVWQyVZBhUfo_vj2L2zXz34UG5t77q4sWQZ4yqqSEWk6JHSznrvoCn38czKHUpKykFxOSguB8Xlv-LYc3fsMXHtiVdZKrI0439-wXnI</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Katriniok, Alexander</creator><creator>Rosarius, Benedikt</creator><creator>Mahonen, Petri</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6934-8636</orcidid><orcidid>https://orcid.org/0000-0003-1137-7885</orcidid></search><sort><creationdate>20221001</creationdate><title>Fully Distributed Model Predictive Control of Connected Automated Vehicles in Intersections: Theory and Vehicle Experiments</title><author>Katriniok, Alexander ; Rosarius, Benedikt ; Mahonen, Petri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c223t-f030a398f63bf3b53362cee9ce4388c66169f35930e68eee97cdc97dea627ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Automation</topic><topic>automotive control</topic><topic>autonomous vehicles</topic><topic>Computer architecture</topic><topic>Control systems</topic><topic>Decentralized control</topic><topic>Distributed control</topic><topic>distributed optimization</topic><topic>Location awareness</topic><topic>Optimal control</topic><topic>Predictive control</topic><topic>Roads</topic><topic>Traffic intersections</topic><topic>Trajectory</topic><topic>Trajectory optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Katriniok, Alexander</creatorcontrib><creatorcontrib>Rosarius, Benedikt</creatorcontrib><creatorcontrib>Mahonen, Petri</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Katriniok, Alexander</au><au>Rosarius, Benedikt</au><au>Mahonen, Petri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fully Distributed Model Predictive Control of Connected Automated Vehicles in Intersections: Theory and Vehicle Experiments</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>23</volume><issue>10</issue><spage>18288</spage><epage>18300</epage><pages>18288-18300</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>We propose a fully distributed control system architecture, amenable to in-vehicle implementation, that aims to safely coordinate connected and automated vehicles (CAVs) at road intersections. For control purposes, we build upon a fully distributed model predictive control approach, in which the agents solve a nonconvex optimal control problem (OCP) locally and synchronously, and exchange their optimized trajectories via vehicle-to-vehicle (V2V) communication. To accommodate a fast solution of the nonconvex OCPs, we apply the penalty convex-concave procedure which solves a convexified version of the original OCP. For experimental evaluation, we complement the predictive controller with a localization layer, being in charge of self-localization, and an estimator, which determines joint collision points with other agents. Experimental tests reveal the efficacy of the proposed control system architecture.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2022.3162038</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6934-8636</orcidid><orcidid>https://orcid.org/0000-0003-1137-7885</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1524-9050 |
ispartof | IEEE transactions on intelligent transportation systems, 2022-10, Vol.23 (10), p.18288-18300 |
issn | 1524-9050 1558-0016 |
language | eng |
recordid | cdi_ieee_primary_9745747 |
source | IEEE Electronic Library (IEL) |
subjects | Automation automotive control autonomous vehicles Computer architecture Control systems Decentralized control Distributed control distributed optimization Location awareness Optimal control Predictive control Roads Traffic intersections Trajectory Trajectory optimization |
title | Fully Distributed Model Predictive Control of Connected Automated Vehicles in Intersections: Theory and Vehicle Experiments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T16%3A35%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fully%20Distributed%20Model%20Predictive%20Control%20of%20Connected%20Automated%20Vehicles%20in%20Intersections:%20Theory%20and%20Vehicle%20Experiments&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Katriniok,%20Alexander&rft.date=2022-10-01&rft.volume=23&rft.issue=10&rft.spage=18288&rft.epage=18300&rft.pages=18288-18300&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2022.3162038&rft_dat=%3Cproquest_RIE%3E2723901445%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2723901445&rft_id=info:pmid/&rft_ieee_id=9745747&rfr_iscdi=true |