Data-Driven Estimation of Voltage-to-Power Sensitivities Considering Their Mutual Dependency in Medium Voltage Distribution Networks
Voltage-to-power sensitivities play a key role in the control and operation of distribution networks. To estimate these sensitivities without network information, data-driven estimation methods have been studied. However, conventional methods do not consider mutual dependency (MD) of the sensitiviti...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power systems 2022-07, Vol.37 (4), p.3173-3176 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3176 |
---|---|
container_issue | 4 |
container_start_page | 3173 |
container_title | IEEE transactions on power systems |
container_volume | 37 |
creator | Chang, Jae-Won Kang, Moses Oh, Seaseung |
description | Voltage-to-power sensitivities play a key role in the control and operation of distribution networks. To estimate these sensitivities without network information, data-driven estimation methods have been studied. However, conventional methods do not consider mutual dependency (MD) of the sensitivities and thus the estimation can be inaccurate. Thus, this paper proposes a new data-driven estimation method of the sensitivities, which considers MD of the sensitivities in medium voltage distribution networks. In the proposed method, via MD analysis, the sensitivities are estimated by solving nonlinear least square problems and thus the accurate estimation can be achieved. The effectiveness of the proposed method is verified using the real-time platform. |
doi_str_mv | 10.1109/TPWRS.2022.3162745 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9743727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9743727</ieee_id><sourcerecordid>2677852978</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1408-b0416cffd1576e51afed963fe7536442a17700ef53f44a5f0d45996a071290453</originalsourceid><addsrcrecordid>eNo9kMlOwzAQhi0EEmV5AbhY4pwydrzER9SySWyCAsfINGMwlLjYThF3HpxAgcNoNJp_kT5CdhgMGQOzP7m6v74ZcuB8WDLFtZArZMCkrApQ2qySAVSVLCojYZ1spPQMAKp_DMjn2GZbjKNfYEsPU_avNvvQ0uDoXZhl-4hFDsVVeMdIb7BNPvtFP5joKPRXg9G3j3TyhD7S8y53dkbHOMe2wXb6QX1Lz7Hx3etfGB37lKN_6H5KLjC_h_iStsias7OE2797k9weHU5GJ8XZ5fHp6OCsmDIBVfEAgqmpcw2TWqFk1mFjVOlQy1IJwS3TGgCdLJ0QVjpohDRGWdCMGxCy3CR7y9x5DG8dplw_hy62fWXNldaV5EZXvYovVdMYUoro6nnsscSPmkH9Tbv-oV1_065_afem3aXJI-K_wWhRaq7LL_OdfVI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2677852978</pqid></control><display><type>article</type><title>Data-Driven Estimation of Voltage-to-Power Sensitivities Considering Their Mutual Dependency in Medium Voltage Distribution Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Chang, Jae-Won ; Kang, Moses ; Oh, Seaseung</creator><creatorcontrib>Chang, Jae-Won ; Kang, Moses ; Oh, Seaseung</creatorcontrib><description>Voltage-to-power sensitivities play a key role in the control and operation of distribution networks. To estimate these sensitivities without network information, data-driven estimation methods have been studied. However, conventional methods do not consider mutual dependency (MD) of the sensitivities and thus the estimation can be inaccurate. Thus, this paper proposes a new data-driven estimation method of the sensitivities, which considers MD of the sensitivities in medium voltage distribution networks. In the proposed method, via MD analysis, the sensitivities are estimated by solving nonlinear least square problems and thus the accurate estimation can be achieved. The effectiveness of the proposed method is verified using the real-time platform.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2022.3162745</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Distribution networks ; Electric potential ; Electric power distribution ; Estimation ; Medium voltage ; Medium voltage distribution network ; mutual dependency ; Networks ; nonlinear least square ; Real-time systems ; Sensitivity ; Sensitivity analysis ; Voltage ; voltage-to-power sensitivity</subject><ispartof>IEEE transactions on power systems, 2022-07, Vol.37 (4), p.3173-3176</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1408-b0416cffd1576e51afed963fe7536442a17700ef53f44a5f0d45996a071290453</citedby><cites>FETCH-LOGICAL-c1408-b0416cffd1576e51afed963fe7536442a17700ef53f44a5f0d45996a071290453</cites><orcidid>0000-0002-6409-5585 ; 0000-0002-1282-7588</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9743727$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9743727$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chang, Jae-Won</creatorcontrib><creatorcontrib>Kang, Moses</creatorcontrib><creatorcontrib>Oh, Seaseung</creatorcontrib><title>Data-Driven Estimation of Voltage-to-Power Sensitivities Considering Their Mutual Dependency in Medium Voltage Distribution Networks</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>Voltage-to-power sensitivities play a key role in the control and operation of distribution networks. To estimate these sensitivities without network information, data-driven estimation methods have been studied. However, conventional methods do not consider mutual dependency (MD) of the sensitivities and thus the estimation can be inaccurate. Thus, this paper proposes a new data-driven estimation method of the sensitivities, which considers MD of the sensitivities in medium voltage distribution networks. In the proposed method, via MD analysis, the sensitivities are estimated by solving nonlinear least square problems and thus the accurate estimation can be achieved. The effectiveness of the proposed method is verified using the real-time platform.</description><subject>Artificial neural networks</subject><subject>Distribution networks</subject><subject>Electric potential</subject><subject>Electric power distribution</subject><subject>Estimation</subject><subject>Medium voltage</subject><subject>Medium voltage distribution network</subject><subject>mutual dependency</subject><subject>Networks</subject><subject>nonlinear least square</subject><subject>Real-time systems</subject><subject>Sensitivity</subject><subject>Sensitivity analysis</subject><subject>Voltage</subject><subject>voltage-to-power sensitivity</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMlOwzAQhi0EEmV5AbhY4pwydrzER9SySWyCAsfINGMwlLjYThF3HpxAgcNoNJp_kT5CdhgMGQOzP7m6v74ZcuB8WDLFtZArZMCkrApQ2qySAVSVLCojYZ1spPQMAKp_DMjn2GZbjKNfYEsPU_avNvvQ0uDoXZhl-4hFDsVVeMdIb7BNPvtFP5joKPRXg9G3j3TyhD7S8y53dkbHOMe2wXb6QX1Lz7Hx3etfGB37lKN_6H5KLjC_h_iStsias7OE2797k9weHU5GJ8XZ5fHp6OCsmDIBVfEAgqmpcw2TWqFk1mFjVOlQy1IJwS3TGgCdLJ0QVjpohDRGWdCMGxCy3CR7y9x5DG8dplw_hy62fWXNldaV5EZXvYovVdMYUoro6nnsscSPmkH9Tbv-oV1_065_afem3aXJI-K_wWhRaq7LL_OdfVI</recordid><startdate>202207</startdate><enddate>202207</enddate><creator>Chang, Jae-Won</creator><creator>Kang, Moses</creator><creator>Oh, Seaseung</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6409-5585</orcidid><orcidid>https://orcid.org/0000-0002-1282-7588</orcidid></search><sort><creationdate>202207</creationdate><title>Data-Driven Estimation of Voltage-to-Power Sensitivities Considering Their Mutual Dependency in Medium Voltage Distribution Networks</title><author>Chang, Jae-Won ; Kang, Moses ; Oh, Seaseung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1408-b0416cffd1576e51afed963fe7536442a17700ef53f44a5f0d45996a071290453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Distribution networks</topic><topic>Electric potential</topic><topic>Electric power distribution</topic><topic>Estimation</topic><topic>Medium voltage</topic><topic>Medium voltage distribution network</topic><topic>mutual dependency</topic><topic>Networks</topic><topic>nonlinear least square</topic><topic>Real-time systems</topic><topic>Sensitivity</topic><topic>Sensitivity analysis</topic><topic>Voltage</topic><topic>voltage-to-power sensitivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Jae-Won</creatorcontrib><creatorcontrib>Kang, Moses</creatorcontrib><creatorcontrib>Oh, Seaseung</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chang, Jae-Won</au><au>Kang, Moses</au><au>Oh, Seaseung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data-Driven Estimation of Voltage-to-Power Sensitivities Considering Their Mutual Dependency in Medium Voltage Distribution Networks</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2022-07</date><risdate>2022</risdate><volume>37</volume><issue>4</issue><spage>3173</spage><epage>3176</epage><pages>3173-3176</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>Voltage-to-power sensitivities play a key role in the control and operation of distribution networks. To estimate these sensitivities without network information, data-driven estimation methods have been studied. However, conventional methods do not consider mutual dependency (MD) of the sensitivities and thus the estimation can be inaccurate. Thus, this paper proposes a new data-driven estimation method of the sensitivities, which considers MD of the sensitivities in medium voltage distribution networks. In the proposed method, via MD analysis, the sensitivities are estimated by solving nonlinear least square problems and thus the accurate estimation can be achieved. The effectiveness of the proposed method is verified using the real-time platform.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2022.3162745</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-6409-5585</orcidid><orcidid>https://orcid.org/0000-0002-1282-7588</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-8950 |
ispartof | IEEE transactions on power systems, 2022-07, Vol.37 (4), p.3173-3176 |
issn | 0885-8950 1558-0679 |
language | eng |
recordid | cdi_ieee_primary_9743727 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial neural networks Distribution networks Electric potential Electric power distribution Estimation Medium voltage Medium voltage distribution network mutual dependency Networks nonlinear least square Real-time systems Sensitivity Sensitivity analysis Voltage voltage-to-power sensitivity |
title | Data-Driven Estimation of Voltage-to-Power Sensitivities Considering Their Mutual Dependency in Medium Voltage Distribution Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T11%3A19%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data-Driven%20Estimation%20of%20Voltage-to-Power%20Sensitivities%20Considering%20Their%20Mutual%20Dependency%20in%20Medium%20Voltage%20Distribution%20Networks&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Chang,%20Jae-Won&rft.date=2022-07&rft.volume=37&rft.issue=4&rft.spage=3173&rft.epage=3176&rft.pages=3173-3176&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2022.3162745&rft_dat=%3Cproquest_RIE%3E2677852978%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2677852978&rft_id=info:pmid/&rft_ieee_id=9743727&rfr_iscdi=true |