Data-Driven Estimation of Voltage-to-Power Sensitivities Considering Their Mutual Dependency in Medium Voltage Distribution Networks

Voltage-to-power sensitivities play a key role in the control and operation of distribution networks. To estimate these sensitivities without network information, data-driven estimation methods have been studied. However, conventional methods do not consider mutual dependency (MD) of the sensitiviti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power systems 2022-07, Vol.37 (4), p.3173-3176
Hauptverfasser: Chang, Jae-Won, Kang, Moses, Oh, Seaseung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3176
container_issue 4
container_start_page 3173
container_title IEEE transactions on power systems
container_volume 37
creator Chang, Jae-Won
Kang, Moses
Oh, Seaseung
description Voltage-to-power sensitivities play a key role in the control and operation of distribution networks. To estimate these sensitivities without network information, data-driven estimation methods have been studied. However, conventional methods do not consider mutual dependency (MD) of the sensitivities and thus the estimation can be inaccurate. Thus, this paper proposes a new data-driven estimation method of the sensitivities, which considers MD of the sensitivities in medium voltage distribution networks. In the proposed method, via MD analysis, the sensitivities are estimated by solving nonlinear least square problems and thus the accurate estimation can be achieved. The effectiveness of the proposed method is verified using the real-time platform.
doi_str_mv 10.1109/TPWRS.2022.3162745
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9743727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9743727</ieee_id><sourcerecordid>2677852978</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1408-b0416cffd1576e51afed963fe7536442a17700ef53f44a5f0d45996a071290453</originalsourceid><addsrcrecordid>eNo9kMlOwzAQhi0EEmV5AbhY4pwydrzER9SySWyCAsfINGMwlLjYThF3HpxAgcNoNJp_kT5CdhgMGQOzP7m6v74ZcuB8WDLFtZArZMCkrApQ2qySAVSVLCojYZ1spPQMAKp_DMjn2GZbjKNfYEsPU_avNvvQ0uDoXZhl-4hFDsVVeMdIb7BNPvtFP5joKPRXg9G3j3TyhD7S8y53dkbHOMe2wXb6QX1Lz7Hx3etfGB37lKN_6H5KLjC_h_iStsias7OE2797k9weHU5GJ8XZ5fHp6OCsmDIBVfEAgqmpcw2TWqFk1mFjVOlQy1IJwS3TGgCdLJ0QVjpohDRGWdCMGxCy3CR7y9x5DG8dplw_hy62fWXNldaV5EZXvYovVdMYUoro6nnsscSPmkH9Tbv-oV1_065_afem3aXJI-K_wWhRaq7LL_OdfVI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2677852978</pqid></control><display><type>article</type><title>Data-Driven Estimation of Voltage-to-Power Sensitivities Considering Their Mutual Dependency in Medium Voltage Distribution Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Chang, Jae-Won ; Kang, Moses ; Oh, Seaseung</creator><creatorcontrib>Chang, Jae-Won ; Kang, Moses ; Oh, Seaseung</creatorcontrib><description>Voltage-to-power sensitivities play a key role in the control and operation of distribution networks. To estimate these sensitivities without network information, data-driven estimation methods have been studied. However, conventional methods do not consider mutual dependency (MD) of the sensitivities and thus the estimation can be inaccurate. Thus, this paper proposes a new data-driven estimation method of the sensitivities, which considers MD of the sensitivities in medium voltage distribution networks. In the proposed method, via MD analysis, the sensitivities are estimated by solving nonlinear least square problems and thus the accurate estimation can be achieved. The effectiveness of the proposed method is verified using the real-time platform.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2022.3162745</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Distribution networks ; Electric potential ; Electric power distribution ; Estimation ; Medium voltage ; Medium voltage distribution network ; mutual dependency ; Networks ; nonlinear least square ; Real-time systems ; Sensitivity ; Sensitivity analysis ; Voltage ; voltage-to-power sensitivity</subject><ispartof>IEEE transactions on power systems, 2022-07, Vol.37 (4), p.3173-3176</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1408-b0416cffd1576e51afed963fe7536442a17700ef53f44a5f0d45996a071290453</citedby><cites>FETCH-LOGICAL-c1408-b0416cffd1576e51afed963fe7536442a17700ef53f44a5f0d45996a071290453</cites><orcidid>0000-0002-6409-5585 ; 0000-0002-1282-7588</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9743727$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9743727$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chang, Jae-Won</creatorcontrib><creatorcontrib>Kang, Moses</creatorcontrib><creatorcontrib>Oh, Seaseung</creatorcontrib><title>Data-Driven Estimation of Voltage-to-Power Sensitivities Considering Their Mutual Dependency in Medium Voltage Distribution Networks</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>Voltage-to-power sensitivities play a key role in the control and operation of distribution networks. To estimate these sensitivities without network information, data-driven estimation methods have been studied. However, conventional methods do not consider mutual dependency (MD) of the sensitivities and thus the estimation can be inaccurate. Thus, this paper proposes a new data-driven estimation method of the sensitivities, which considers MD of the sensitivities in medium voltage distribution networks. In the proposed method, via MD analysis, the sensitivities are estimated by solving nonlinear least square problems and thus the accurate estimation can be achieved. The effectiveness of the proposed method is verified using the real-time platform.</description><subject>Artificial neural networks</subject><subject>Distribution networks</subject><subject>Electric potential</subject><subject>Electric power distribution</subject><subject>Estimation</subject><subject>Medium voltage</subject><subject>Medium voltage distribution network</subject><subject>mutual dependency</subject><subject>Networks</subject><subject>nonlinear least square</subject><subject>Real-time systems</subject><subject>Sensitivity</subject><subject>Sensitivity analysis</subject><subject>Voltage</subject><subject>voltage-to-power sensitivity</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMlOwzAQhi0EEmV5AbhY4pwydrzER9SySWyCAsfINGMwlLjYThF3HpxAgcNoNJp_kT5CdhgMGQOzP7m6v74ZcuB8WDLFtZArZMCkrApQ2qySAVSVLCojYZ1spPQMAKp_DMjn2GZbjKNfYEsPU_avNvvQ0uDoXZhl-4hFDsVVeMdIb7BNPvtFP5joKPRXg9G3j3TyhD7S8y53dkbHOMe2wXb6QX1Lz7Hx3etfGB37lKN_6H5KLjC_h_iStsias7OE2797k9weHU5GJ8XZ5fHp6OCsmDIBVfEAgqmpcw2TWqFk1mFjVOlQy1IJwS3TGgCdLJ0QVjpohDRGWdCMGxCy3CR7y9x5DG8dplw_hy62fWXNldaV5EZXvYovVdMYUoro6nnsscSPmkH9Tbv-oV1_065_afem3aXJI-K_wWhRaq7LL_OdfVI</recordid><startdate>202207</startdate><enddate>202207</enddate><creator>Chang, Jae-Won</creator><creator>Kang, Moses</creator><creator>Oh, Seaseung</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6409-5585</orcidid><orcidid>https://orcid.org/0000-0002-1282-7588</orcidid></search><sort><creationdate>202207</creationdate><title>Data-Driven Estimation of Voltage-to-Power Sensitivities Considering Their Mutual Dependency in Medium Voltage Distribution Networks</title><author>Chang, Jae-Won ; Kang, Moses ; Oh, Seaseung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1408-b0416cffd1576e51afed963fe7536442a17700ef53f44a5f0d45996a071290453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Distribution networks</topic><topic>Electric potential</topic><topic>Electric power distribution</topic><topic>Estimation</topic><topic>Medium voltage</topic><topic>Medium voltage distribution network</topic><topic>mutual dependency</topic><topic>Networks</topic><topic>nonlinear least square</topic><topic>Real-time systems</topic><topic>Sensitivity</topic><topic>Sensitivity analysis</topic><topic>Voltage</topic><topic>voltage-to-power sensitivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Jae-Won</creatorcontrib><creatorcontrib>Kang, Moses</creatorcontrib><creatorcontrib>Oh, Seaseung</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chang, Jae-Won</au><au>Kang, Moses</au><au>Oh, Seaseung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data-Driven Estimation of Voltage-to-Power Sensitivities Considering Their Mutual Dependency in Medium Voltage Distribution Networks</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2022-07</date><risdate>2022</risdate><volume>37</volume><issue>4</issue><spage>3173</spage><epage>3176</epage><pages>3173-3176</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>Voltage-to-power sensitivities play a key role in the control and operation of distribution networks. To estimate these sensitivities without network information, data-driven estimation methods have been studied. However, conventional methods do not consider mutual dependency (MD) of the sensitivities and thus the estimation can be inaccurate. Thus, this paper proposes a new data-driven estimation method of the sensitivities, which considers MD of the sensitivities in medium voltage distribution networks. In the proposed method, via MD analysis, the sensitivities are estimated by solving nonlinear least square problems and thus the accurate estimation can be achieved. The effectiveness of the proposed method is verified using the real-time platform.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2022.3162745</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-6409-5585</orcidid><orcidid>https://orcid.org/0000-0002-1282-7588</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8950
ispartof IEEE transactions on power systems, 2022-07, Vol.37 (4), p.3173-3176
issn 0885-8950
1558-0679
language eng
recordid cdi_ieee_primary_9743727
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Distribution networks
Electric potential
Electric power distribution
Estimation
Medium voltage
Medium voltage distribution network
mutual dependency
Networks
nonlinear least square
Real-time systems
Sensitivity
Sensitivity analysis
Voltage
voltage-to-power sensitivity
title Data-Driven Estimation of Voltage-to-Power Sensitivities Considering Their Mutual Dependency in Medium Voltage Distribution Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T11%3A19%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data-Driven%20Estimation%20of%20Voltage-to-Power%20Sensitivities%20Considering%20Their%20Mutual%20Dependency%20in%20Medium%20Voltage%20Distribution%20Networks&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Chang,%20Jae-Won&rft.date=2022-07&rft.volume=37&rft.issue=4&rft.spage=3173&rft.epage=3176&rft.pages=3173-3176&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2022.3162745&rft_dat=%3Cproquest_RIE%3E2677852978%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2677852978&rft_id=info:pmid/&rft_ieee_id=9743727&rfr_iscdi=true