Subpixel Displacement Measurement at 784 FPS: From Algorithm to Hardware System

Measuring object displacement with subpixel-level accuracy is attracting increasing attention in numerous computer-vision-based applications, because of its high potential in compensating for camera resolution. Although ultrahigh-speed measurement is highly desired in many fields, existing researche...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement 2022, Vol.71, p.1-10
Hauptverfasser: Du, Songlin, Gu, Kaidong, Ikenaga, Takeshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue
container_start_page 1
container_title IEEE transactions on instrumentation and measurement
container_volume 71
creator Du, Songlin
Gu, Kaidong
Ikenaga, Takeshi
description Measuring object displacement with subpixel-level accuracy is attracting increasing attention in numerous computer-vision-based applications, because of its high potential in compensating for camera resolution. Although ultrahigh-speed measurement is highly desired in many fields, existing researches on subpixel displacement measurement mainly concentrate on accuracy, and few works attempt to reach high measurement speed. This article proposes an ultrahigh-speed subpixel displacement measurement approach. From algorithm perspective, a feature fusion-based directional sign-only correlation, a fitting-free subpixel displacement measurement method, and a dual-diagonals intensity-gap quantification are proposed. From hardware-system perspective, a system-level architecture for the proposed hardware-friendly algorithm is designed for highly-parallel processing. The proposed hardware architecture is implemented as a practical system by integrating a high-speed industrial camera, a field programmable gate array (FPGA), and a computer. Experimental results show that the proposed approach works in real-time at 784 frames per second (FPS) in image processing core with a delay of 0.75 ms per frame, while the average measurement stability quantified by the process capability index (PCI) improves 5.75 compared with discrete cosine transform (DCT) sign-only correlation.
doi_str_mv 10.1109/TIM.2022.3162290
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9741718</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9741718</ieee_id><sourcerecordid>2649793018</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-982cb0a8394e74c4fe6aab9602a98b90c39323037da3368698dde8749b58bc603</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFbvgpcFz6mzH9kPb6UaW2ip0HpeNslWU5Im7iZo_70pKZ5mDs_7DvMgdE9gQgjop-1iNaFA6YQRQamGCzQicSwjLQS9RCMAoiLNY3GNbkLYA4AUXI7QetOlTfHrSvxShKa0mavcocUrZ0Pnh922WCqOk_fNM058XeFp-Vn7ov2qcFvjufX5j_UOb46hddUtutrZMri78xyjj-R1O5tHy_XbYjZdRhmlpI20olkKVjHNneQZ3zlhbaoFUKtVqiFjmlEGTOaWMaGEVnnulOQ6jVWaCWBj9Dj0Nr7-7lxozb7u_KE_aajgWmrWP9xTMFCZr0PwbmcaX1TWHw0Bc9Jmem3mpM2ctfWRhyFSOOf-cS05kX3hH3ALZuE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2649793018</pqid></control><display><type>article</type><title>Subpixel Displacement Measurement at 784 FPS: From Algorithm to Hardware System</title><source>IEEE Electronic Library (IEL)</source><creator>Du, Songlin ; Gu, Kaidong ; Ikenaga, Takeshi</creator><creatorcontrib>Du, Songlin ; Gu, Kaidong ; Ikenaga, Takeshi</creatorcontrib><description>Measuring object displacement with subpixel-level accuracy is attracting increasing attention in numerous computer-vision-based applications, because of its high potential in compensating for camera resolution. Although ultrahigh-speed measurement is highly desired in many fields, existing researches on subpixel displacement measurement mainly concentrate on accuracy, and few works attempt to reach high measurement speed. This article proposes an ultrahigh-speed subpixel displacement measurement approach. From algorithm perspective, a feature fusion-based directional sign-only correlation, a fitting-free subpixel displacement measurement method, and a dual-diagonals intensity-gap quantification are proposed. From hardware-system perspective, a system-level architecture for the proposed hardware-friendly algorithm is designed for highly-parallel processing. The proposed hardware architecture is implemented as a practical system by integrating a high-speed industrial camera, a field programmable gate array (FPGA), and a computer. Experimental results show that the proposed approach works in real-time at 784 frames per second (FPS) in image processing core with a delay of 0.75 ms per frame, while the average measurement stability quantified by the process capability index (PCI) improves 5.75 compared with discrete cosine transform (DCT) sign-only correlation.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2022.3162290</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Cameras ; Capability indices ; Computer architecture ; Correlation ; Discrete cosine transform ; Discrete cosine transform (DCT) sign-only correlation ; Discrete cosine transforms ; Displacement measurement ; Field programmable gate arrays ; Fourier phase-only correlation ; Frames per second ; Frequency-domain analysis ; Hardware ; hardware architecture ; Image processing ; Interpolation ; Measurement methods ; Microprocessors ; Parallel processing ; Phase measurement ; Pixels ; subpixel accuracy ; ultrahigh speed</subject><ispartof>IEEE transactions on instrumentation and measurement, 2022, Vol.71, p.1-10</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c221t-982cb0a8394e74c4fe6aab9602a98b90c39323037da3368698dde8749b58bc603</citedby><cites>FETCH-LOGICAL-c221t-982cb0a8394e74c4fe6aab9602a98b90c39323037da3368698dde8749b58bc603</cites><orcidid>0000-0002-9644-6124 ; 0000-0003-4937-2713 ; 0000-0001-8338-8175</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9741718$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,4012,27910,27911,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9741718$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Du, Songlin</creatorcontrib><creatorcontrib>Gu, Kaidong</creatorcontrib><creatorcontrib>Ikenaga, Takeshi</creatorcontrib><title>Subpixel Displacement Measurement at 784 FPS: From Algorithm to Hardware System</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>Measuring object displacement with subpixel-level accuracy is attracting increasing attention in numerous computer-vision-based applications, because of its high potential in compensating for camera resolution. Although ultrahigh-speed measurement is highly desired in many fields, existing researches on subpixel displacement measurement mainly concentrate on accuracy, and few works attempt to reach high measurement speed. This article proposes an ultrahigh-speed subpixel displacement measurement approach. From algorithm perspective, a feature fusion-based directional sign-only correlation, a fitting-free subpixel displacement measurement method, and a dual-diagonals intensity-gap quantification are proposed. From hardware-system perspective, a system-level architecture for the proposed hardware-friendly algorithm is designed for highly-parallel processing. The proposed hardware architecture is implemented as a practical system by integrating a high-speed industrial camera, a field programmable gate array (FPGA), and a computer. Experimental results show that the proposed approach works in real-time at 784 frames per second (FPS) in image processing core with a delay of 0.75 ms per frame, while the average measurement stability quantified by the process capability index (PCI) improves 5.75 compared with discrete cosine transform (DCT) sign-only correlation.</description><subject>Algorithms</subject><subject>Cameras</subject><subject>Capability indices</subject><subject>Computer architecture</subject><subject>Correlation</subject><subject>Discrete cosine transform</subject><subject>Discrete cosine transform (DCT) sign-only correlation</subject><subject>Discrete cosine transforms</subject><subject>Displacement measurement</subject><subject>Field programmable gate arrays</subject><subject>Fourier phase-only correlation</subject><subject>Frames per second</subject><subject>Frequency-domain analysis</subject><subject>Hardware</subject><subject>hardware architecture</subject><subject>Image processing</subject><subject>Interpolation</subject><subject>Measurement methods</subject><subject>Microprocessors</subject><subject>Parallel processing</subject><subject>Phase measurement</subject><subject>Pixels</subject><subject>subpixel accuracy</subject><subject>ultrahigh speed</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFbvgpcFz6mzH9kPb6UaW2ip0HpeNslWU5Im7iZo_70pKZ5mDs_7DvMgdE9gQgjop-1iNaFA6YQRQamGCzQicSwjLQS9RCMAoiLNY3GNbkLYA4AUXI7QetOlTfHrSvxShKa0mavcocUrZ0Pnh922WCqOk_fNM058XeFp-Vn7ov2qcFvjufX5j_UOb46hddUtutrZMri78xyjj-R1O5tHy_XbYjZdRhmlpI20olkKVjHNneQZ3zlhbaoFUKtVqiFjmlEGTOaWMaGEVnnulOQ6jVWaCWBj9Dj0Nr7-7lxozb7u_KE_aajgWmrWP9xTMFCZr0PwbmcaX1TWHw0Bc9Jmem3mpM2ctfWRhyFSOOf-cS05kX3hH3ALZuE</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Du, Songlin</creator><creator>Gu, Kaidong</creator><creator>Ikenaga, Takeshi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9644-6124</orcidid><orcidid>https://orcid.org/0000-0003-4937-2713</orcidid><orcidid>https://orcid.org/0000-0001-8338-8175</orcidid></search><sort><creationdate>2022</creationdate><title>Subpixel Displacement Measurement at 784 FPS: From Algorithm to Hardware System</title><author>Du, Songlin ; Gu, Kaidong ; Ikenaga, Takeshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-982cb0a8394e74c4fe6aab9602a98b90c39323037da3368698dde8749b58bc603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Cameras</topic><topic>Capability indices</topic><topic>Computer architecture</topic><topic>Correlation</topic><topic>Discrete cosine transform</topic><topic>Discrete cosine transform (DCT) sign-only correlation</topic><topic>Discrete cosine transforms</topic><topic>Displacement measurement</topic><topic>Field programmable gate arrays</topic><topic>Fourier phase-only correlation</topic><topic>Frames per second</topic><topic>Frequency-domain analysis</topic><topic>Hardware</topic><topic>hardware architecture</topic><topic>Image processing</topic><topic>Interpolation</topic><topic>Measurement methods</topic><topic>Microprocessors</topic><topic>Parallel processing</topic><topic>Phase measurement</topic><topic>Pixels</topic><topic>subpixel accuracy</topic><topic>ultrahigh speed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Du, Songlin</creatorcontrib><creatorcontrib>Gu, Kaidong</creatorcontrib><creatorcontrib>Ikenaga, Takeshi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Du, Songlin</au><au>Gu, Kaidong</au><au>Ikenaga, Takeshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Subpixel Displacement Measurement at 784 FPS: From Algorithm to Hardware System</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2022</date><risdate>2022</risdate><volume>71</volume><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>Measuring object displacement with subpixel-level accuracy is attracting increasing attention in numerous computer-vision-based applications, because of its high potential in compensating for camera resolution. Although ultrahigh-speed measurement is highly desired in many fields, existing researches on subpixel displacement measurement mainly concentrate on accuracy, and few works attempt to reach high measurement speed. This article proposes an ultrahigh-speed subpixel displacement measurement approach. From algorithm perspective, a feature fusion-based directional sign-only correlation, a fitting-free subpixel displacement measurement method, and a dual-diagonals intensity-gap quantification are proposed. From hardware-system perspective, a system-level architecture for the proposed hardware-friendly algorithm is designed for highly-parallel processing. The proposed hardware architecture is implemented as a practical system by integrating a high-speed industrial camera, a field programmable gate array (FPGA), and a computer. Experimental results show that the proposed approach works in real-time at 784 frames per second (FPS) in image processing core with a delay of 0.75 ms per frame, while the average measurement stability quantified by the process capability index (PCI) improves 5.75 compared with discrete cosine transform (DCT) sign-only correlation.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2022.3162290</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9644-6124</orcidid><orcidid>https://orcid.org/0000-0003-4937-2713</orcidid><orcidid>https://orcid.org/0000-0001-8338-8175</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9456
ispartof IEEE transactions on instrumentation and measurement, 2022, Vol.71, p.1-10
issn 0018-9456
1557-9662
language eng
recordid cdi_ieee_primary_9741718
source IEEE Electronic Library (IEL)
subjects Algorithms
Cameras
Capability indices
Computer architecture
Correlation
Discrete cosine transform
Discrete cosine transform (DCT) sign-only correlation
Discrete cosine transforms
Displacement measurement
Field programmable gate arrays
Fourier phase-only correlation
Frames per second
Frequency-domain analysis
Hardware
hardware architecture
Image processing
Interpolation
Measurement methods
Microprocessors
Parallel processing
Phase measurement
Pixels
subpixel accuracy
ultrahigh speed
title Subpixel Displacement Measurement at 784 FPS: From Algorithm to Hardware System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T23%3A41%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Subpixel%20Displacement%20Measurement%20at%20784%20FPS:%20From%20Algorithm%20to%20Hardware%20System&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Du,%20Songlin&rft.date=2022&rft.volume=71&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2022.3162290&rft_dat=%3Cproquest_RIE%3E2649793018%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2649793018&rft_id=info:pmid/&rft_ieee_id=9741718&rfr_iscdi=true