Random Reconstructed Unpaired Image-to-Image Translation

The goal of unpaired image-to-image translation is to learn a mapping from a source domain to a target domain without using any labeled examples of paired images. This problem can be solved by learning the conditional distribution of source images in the target domain. A major limitation of existing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial informatics 2023-03, Vol.19 (3), p.3144-3154
Hauptverfasser: Zhang, Xiaoqin, Fan, Chenxiang, Xiao, Zhiheng, Zhao, Li, Chen, Huiling, Chang, Xiaojun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3154
container_issue 3
container_start_page 3144
container_title IEEE transactions on industrial informatics
container_volume 19
creator Zhang, Xiaoqin
Fan, Chenxiang
Xiao, Zhiheng
Zhao, Li
Chen, Huiling
Chang, Xiaojun
description The goal of unpaired image-to-image translation is to learn a mapping from a source domain to a target domain without using any labeled examples of paired images. This problem can be solved by learning the conditional distribution of source images in the target domain. A major limitation of existing unpaired image-to-image translation algorithms is that they generate untruthful images which are overcolored and lack details, while the translation of realistic images must be rich in details. To address this limitation, in this article, we propose a random reconstructed unpaired image-to-image translation (RRUIT) framework by generative adversarial network, which uses random reconstruction to preserve the high-level features in the source and adopts an adversarial strategy to learn the distribution in the target. We update the proposed objective function with two loss functions. The auxiliary loss guides the generator to create a coarse image, while the coarse-to-fine block next to the generator block produces an image that obeys the distribution of the target domain. The coarse-to-fine block contains two submodules based on the densely connected atrous spatial pyramid pooling, which enriches the details of generated images. We conduct extensive experiments on photorealistic stylization and artistic stylization. The experimental results confirm the superiority of the proposed RRUIT.
doi_str_mv 10.1109/TII.2022.3160705
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9739848</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9739848</ieee_id><sourcerecordid>2784633182</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-c310e39c5e2503d5e64d9ea53d9bd187ba542589e36bcee472587552342f08aa3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wUvBc-oks9kkRyl-LBSE0p5Dmp3KlnZTk-3Bf29qxdO8A887Aw9j9wKmQoB9WjbNVIKUUxQ1aFAXbCRsJTiAgsuSlRIcJeA1u8l5C4Aa0I6YWfi-jfvJgkLs85COYaB2suoPvkslNHv_SXyI_DdMlsn3eeeHLva37Grjd5nu_uaYrV5flrN3Pv94a2bPcx6kFQMPKIDQBkVSAbaK6qq15BW2dt0Ko9deVVIZS1ivA1Gly6KVkljJDRjvccwez3cPKX4dKQ9uG4-pLy-d1KaqEYWRhYIzFVLMOdHGHVK39-nbCXAnP674cSc_7s9PqTycKx0R_eNWozWVwR-yi19_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2784633182</pqid></control><display><type>article</type><title>Random Reconstructed Unpaired Image-to-Image Translation</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Xiaoqin ; Fan, Chenxiang ; Xiao, Zhiheng ; Zhao, Li ; Chen, Huiling ; Chang, Xiaojun</creator><creatorcontrib>Zhang, Xiaoqin ; Fan, Chenxiang ; Xiao, Zhiheng ; Zhao, Li ; Chen, Huiling ; Chang, Xiaojun</creatorcontrib><description>The goal of unpaired image-to-image translation is to learn a mapping from a source domain to a target domain without using any labeled examples of paired images. This problem can be solved by learning the conditional distribution of source images in the target domain. A major limitation of existing unpaired image-to-image translation algorithms is that they generate untruthful images which are overcolored and lack details, while the translation of realistic images must be rich in details. To address this limitation, in this article, we propose a random reconstructed unpaired image-to-image translation (RRUIT) framework by generative adversarial network, which uses random reconstruction to preserve the high-level features in the source and adopts an adversarial strategy to learn the distribution in the target. We update the proposed objective function with two loss functions. The auxiliary loss guides the generator to create a coarse image, while the coarse-to-fine block next to the generator block produces an image that obeys the distribution of the target domain. The coarse-to-fine block contains two submodules based on the densely connected atrous spatial pyramid pooling, which enriches the details of generated images. We conduct extensive experiments on photorealistic stylization and artistic stylization. The experimental results confirm the superiority of the proposed RRUIT.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2022.3160705</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Domains ; Feature extraction ; Generative adversarial network (GANs) ; Generative adversarial networks ; Generators ; Image reconstruction ; image-to-image translation ; Informatics ; random feature reconstruction ; Semantics ; Training</subject><ispartof>IEEE transactions on industrial informatics, 2023-03, Vol.19 (3), p.3144-3154</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-c310e39c5e2503d5e64d9ea53d9bd187ba542589e36bcee472587552342f08aa3</citedby><cites>FETCH-LOGICAL-c291t-c310e39c5e2503d5e64d9ea53d9bd187ba542589e36bcee472587552342f08aa3</cites><orcidid>0000-0003-0958-7285 ; 0000-0002-7778-8807 ; 0000-0002-8793-1726 ; 0000-0002-7714-9693 ; 0000-0001-5787-2705</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9739848$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27911,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9739848$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Xiaoqin</creatorcontrib><creatorcontrib>Fan, Chenxiang</creatorcontrib><creatorcontrib>Xiao, Zhiheng</creatorcontrib><creatorcontrib>Zhao, Li</creatorcontrib><creatorcontrib>Chen, Huiling</creatorcontrib><creatorcontrib>Chang, Xiaojun</creatorcontrib><title>Random Reconstructed Unpaired Image-to-Image Translation</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>The goal of unpaired image-to-image translation is to learn a mapping from a source domain to a target domain without using any labeled examples of paired images. This problem can be solved by learning the conditional distribution of source images in the target domain. A major limitation of existing unpaired image-to-image translation algorithms is that they generate untruthful images which are overcolored and lack details, while the translation of realistic images must be rich in details. To address this limitation, in this article, we propose a random reconstructed unpaired image-to-image translation (RRUIT) framework by generative adversarial network, which uses random reconstruction to preserve the high-level features in the source and adopts an adversarial strategy to learn the distribution in the target. We update the proposed objective function with two loss functions. The auxiliary loss guides the generator to create a coarse image, while the coarse-to-fine block next to the generator block produces an image that obeys the distribution of the target domain. The coarse-to-fine block contains two submodules based on the densely connected atrous spatial pyramid pooling, which enriches the details of generated images. We conduct extensive experiments on photorealistic stylization and artistic stylization. The experimental results confirm the superiority of the proposed RRUIT.</description><subject>Algorithms</subject><subject>Domains</subject><subject>Feature extraction</subject><subject>Generative adversarial network (GANs)</subject><subject>Generative adversarial networks</subject><subject>Generators</subject><subject>Image reconstruction</subject><subject>image-to-image translation</subject><subject>Informatics</subject><subject>random feature reconstruction</subject><subject>Semantics</subject><subject>Training</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wUvBc-oks9kkRyl-LBSE0p5Dmp3KlnZTk-3Bf29qxdO8A887Aw9j9wKmQoB9WjbNVIKUUxQ1aFAXbCRsJTiAgsuSlRIcJeA1u8l5C4Aa0I6YWfi-jfvJgkLs85COYaB2suoPvkslNHv_SXyI_DdMlsn3eeeHLva37Grjd5nu_uaYrV5flrN3Pv94a2bPcx6kFQMPKIDQBkVSAbaK6qq15BW2dt0Ko9deVVIZS1ivA1Gly6KVkljJDRjvccwez3cPKX4dKQ9uG4-pLy-d1KaqEYWRhYIzFVLMOdHGHVK39-nbCXAnP674cSc_7s9PqTycKx0R_eNWozWVwR-yi19_</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Zhang, Xiaoqin</creator><creator>Fan, Chenxiang</creator><creator>Xiao, Zhiheng</creator><creator>Zhao, Li</creator><creator>Chen, Huiling</creator><creator>Chang, Xiaojun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0958-7285</orcidid><orcidid>https://orcid.org/0000-0002-7778-8807</orcidid><orcidid>https://orcid.org/0000-0002-8793-1726</orcidid><orcidid>https://orcid.org/0000-0002-7714-9693</orcidid><orcidid>https://orcid.org/0000-0001-5787-2705</orcidid></search><sort><creationdate>20230301</creationdate><title>Random Reconstructed Unpaired Image-to-Image Translation</title><author>Zhang, Xiaoqin ; Fan, Chenxiang ; Xiao, Zhiheng ; Zhao, Li ; Chen, Huiling ; Chang, Xiaojun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-c310e39c5e2503d5e64d9ea53d9bd187ba542589e36bcee472587552342f08aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Domains</topic><topic>Feature extraction</topic><topic>Generative adversarial network (GANs)</topic><topic>Generative adversarial networks</topic><topic>Generators</topic><topic>Image reconstruction</topic><topic>image-to-image translation</topic><topic>Informatics</topic><topic>random feature reconstruction</topic><topic>Semantics</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xiaoqin</creatorcontrib><creatorcontrib>Fan, Chenxiang</creatorcontrib><creatorcontrib>Xiao, Zhiheng</creatorcontrib><creatorcontrib>Zhao, Li</creatorcontrib><creatorcontrib>Chen, Huiling</creatorcontrib><creatorcontrib>Chang, Xiaojun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Xiaoqin</au><au>Fan, Chenxiang</au><au>Xiao, Zhiheng</au><au>Zhao, Li</au><au>Chen, Huiling</au><au>Chang, Xiaojun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Random Reconstructed Unpaired Image-to-Image Translation</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>19</volume><issue>3</issue><spage>3144</spage><epage>3154</epage><pages>3144-3154</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>The goal of unpaired image-to-image translation is to learn a mapping from a source domain to a target domain without using any labeled examples of paired images. This problem can be solved by learning the conditional distribution of source images in the target domain. A major limitation of existing unpaired image-to-image translation algorithms is that they generate untruthful images which are overcolored and lack details, while the translation of realistic images must be rich in details. To address this limitation, in this article, we propose a random reconstructed unpaired image-to-image translation (RRUIT) framework by generative adversarial network, which uses random reconstruction to preserve the high-level features in the source and adopts an adversarial strategy to learn the distribution in the target. We update the proposed objective function with two loss functions. The auxiliary loss guides the generator to create a coarse image, while the coarse-to-fine block next to the generator block produces an image that obeys the distribution of the target domain. The coarse-to-fine block contains two submodules based on the densely connected atrous spatial pyramid pooling, which enriches the details of generated images. We conduct extensive experiments on photorealistic stylization and artistic stylization. The experimental results confirm the superiority of the proposed RRUIT.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2022.3160705</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0958-7285</orcidid><orcidid>https://orcid.org/0000-0002-7778-8807</orcidid><orcidid>https://orcid.org/0000-0002-8793-1726</orcidid><orcidid>https://orcid.org/0000-0002-7714-9693</orcidid><orcidid>https://orcid.org/0000-0001-5787-2705</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1551-3203
ispartof IEEE transactions on industrial informatics, 2023-03, Vol.19 (3), p.3144-3154
issn 1551-3203
1941-0050
language eng
recordid cdi_ieee_primary_9739848
source IEEE Electronic Library (IEL)
subjects Algorithms
Domains
Feature extraction
Generative adversarial network (GANs)
Generative adversarial networks
Generators
Image reconstruction
image-to-image translation
Informatics
random feature reconstruction
Semantics
Training
title Random Reconstructed Unpaired Image-to-Image Translation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T10%3A12%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Random%20Reconstructed%20Unpaired%20Image-to-Image%20Translation&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Zhang,%20Xiaoqin&rft.date=2023-03-01&rft.volume=19&rft.issue=3&rft.spage=3144&rft.epage=3154&rft.pages=3144-3154&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2022.3160705&rft_dat=%3Cproquest_RIE%3E2784633182%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2784633182&rft_id=info:pmid/&rft_ieee_id=9739848&rfr_iscdi=true