Fast Restoring the Controllability of Networked Systems With Symmetric Weights

Structural controllability theory enables us to attain controllability of networked systems independent of edge weights. However, the theory is restricted to a strong assumption that all edge weights are independent of each other, limiting the practical application in most real life scenarios. In th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on network science and engineering 2022-07, Vol.9 (4), p.2098-2109
Hauptverfasser: Cui, Yulong, Wu, Mincheng, He, Shibo, Cheng, Peng, Dong, Hairong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2109
container_issue 4
container_start_page 2098
container_title IEEE transactions on network science and engineering
container_volume 9
creator Cui, Yulong
Wu, Mincheng
He, Shibo
Cheng, Peng
Dong, Hairong
description Structural controllability theory enables us to attain controllability of networked systems independent of edge weights. However, the theory is restricted to a strong assumption that all edge weights are independent of each other, limiting the practical application in most real life scenarios. In this paper, we develop a new theory to restore the controllability of networked systems with coupled edge weights, i.e., symmetric edge weights. Firstly, we show that an uncontrollable symmetric networked system can be transformed into a controllable temporal network by the sym-cactus-based segmentation method and provide the rigorous theoretical proof. Then we consider the least number of segmentation to restore the controllability as quickly as possible and reduce the problem to the classical set coverage problem. Finally, an approximate polynomial-time algorithm and a simulation example are provided to demonstrate the validity of our method.
doi_str_mv 10.1109/TNSE.2022.3155296
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9737062</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9737062</ieee_id><sourcerecordid>2681955619</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-673d668dfd71ededc713b94e166ddcdec0ecc1a0d8e3167ffebfd53f60bec41a3</originalsourceid><addsrcrecordid>eNo9kN9LwzAQx4MoOOb-APGl4HNnfrRJ8yhjU2FMcJP5FtrkumW2y0wyZP-9LRs-3R18vnfHB6F7gseEYPm0WiynY4opHTOS51TyKzSgjGUpo_Lruu-pSDMuxS0ahbDDGBNacMbYAC1mZYjJB4TovN1vkriFZOL20bumKSvb2HhKXJ0sIP46_w0mWZ5ChDYkaxu33dC2EL3VyRrsZhvDHbqpyybA6FKH6HM2XU1e0_n7y9vkeZ5qKllMuWCG88LURhAwYLQgrJIZEM6N0QY0Bq1JiU0BjHBR11DVJmc1xxXojJRsiB7Pew_e_Ry779XOHf2-O6koL4jMc05kR5Ezpb0LwUOtDt62pT8pglVvTvXmVG9OXcx1mYdzxgLAPy8FE5hT9gfc_Gvr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2681955619</pqid></control><display><type>article</type><title>Fast Restoring the Controllability of Networked Systems With Symmetric Weights</title><source>IEEE Electronic Library (IEL)</source><creator>Cui, Yulong ; Wu, Mincheng ; He, Shibo ; Cheng, Peng ; Dong, Hairong</creator><creatorcontrib>Cui, Yulong ; Wu, Mincheng ; He, Shibo ; Cheng, Peng ; Dong, Hairong</creatorcontrib><description>Structural controllability theory enables us to attain controllability of networked systems independent of edge weights. However, the theory is restricted to a strong assumption that all edge weights are independent of each other, limiting the practical application in most real life scenarios. In this paper, we develop a new theory to restore the controllability of networked systems with coupled edge weights, i.e., symmetric edge weights. Firstly, we show that an uncontrollable symmetric networked system can be transformed into a controllable temporal network by the sym-cactus-based segmentation method and provide the rigorous theoretical proof. Then we consider the least number of segmentation to restore the controllability as quickly as possible and reduce the problem to the classical set coverage problem. Finally, an approximate polynomial-time algorithm and a simulation example are provided to demonstrate the validity of our method.</description><identifier>ISSN: 2327-4697</identifier><identifier>EISSN: 2334-329X</identifier><identifier>DOI: 10.1109/TNSE.2022.3155296</identifier><identifier>CODEN: ITNSD5</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Approximation algorithms ; Controllability ; Controllability restoration ; Directed graphs ; Linear systems ; network control ; Polynomials ; Segmentation ; Set theory ; sym-cactus segmentation ; Symmetric matrices ; temporal networks ; Topology</subject><ispartof>IEEE transactions on network science and engineering, 2022-07, Vol.9 (4), p.2098-2109</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-673d668dfd71ededc713b94e166ddcdec0ecc1a0d8e3167ffebfd53f60bec41a3</citedby><cites>FETCH-LOGICAL-c293t-673d668dfd71ededc713b94e166ddcdec0ecc1a0d8e3167ffebfd53f60bec41a3</cites><orcidid>0000-0002-1505-6766 ; 0000-0003-4369-3401</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9737062$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27902,27903,54735</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9737062$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cui, Yulong</creatorcontrib><creatorcontrib>Wu, Mincheng</creatorcontrib><creatorcontrib>He, Shibo</creatorcontrib><creatorcontrib>Cheng, Peng</creatorcontrib><creatorcontrib>Dong, Hairong</creatorcontrib><title>Fast Restoring the Controllability of Networked Systems With Symmetric Weights</title><title>IEEE transactions on network science and engineering</title><addtitle>TNSE</addtitle><description>Structural controllability theory enables us to attain controllability of networked systems independent of edge weights. However, the theory is restricted to a strong assumption that all edge weights are independent of each other, limiting the practical application in most real life scenarios. In this paper, we develop a new theory to restore the controllability of networked systems with coupled edge weights, i.e., symmetric edge weights. Firstly, we show that an uncontrollable symmetric networked system can be transformed into a controllable temporal network by the sym-cactus-based segmentation method and provide the rigorous theoretical proof. Then we consider the least number of segmentation to restore the controllability as quickly as possible and reduce the problem to the classical set coverage problem. Finally, an approximate polynomial-time algorithm and a simulation example are provided to demonstrate the validity of our method.</description><subject>Algorithms</subject><subject>Approximation algorithms</subject><subject>Controllability</subject><subject>Controllability restoration</subject><subject>Directed graphs</subject><subject>Linear systems</subject><subject>network control</subject><subject>Polynomials</subject><subject>Segmentation</subject><subject>Set theory</subject><subject>sym-cactus segmentation</subject><subject>Symmetric matrices</subject><subject>temporal networks</subject><subject>Topology</subject><issn>2327-4697</issn><issn>2334-329X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kN9LwzAQx4MoOOb-APGl4HNnfrRJ8yhjU2FMcJP5FtrkumW2y0wyZP-9LRs-3R18vnfHB6F7gseEYPm0WiynY4opHTOS51TyKzSgjGUpo_Lruu-pSDMuxS0ahbDDGBNacMbYAC1mZYjJB4TovN1vkriFZOL20bumKSvb2HhKXJ0sIP46_w0mWZ5ChDYkaxu33dC2EL3VyRrsZhvDHbqpyybA6FKH6HM2XU1e0_n7y9vkeZ5qKllMuWCG88LURhAwYLQgrJIZEM6N0QY0Bq1JiU0BjHBR11DVJmc1xxXojJRsiB7Pew_e_Ry779XOHf2-O6koL4jMc05kR5Ezpb0LwUOtDt62pT8pglVvTvXmVG9OXcx1mYdzxgLAPy8FE5hT9gfc_Gvr</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Cui, Yulong</creator><creator>Wu, Mincheng</creator><creator>He, Shibo</creator><creator>Cheng, Peng</creator><creator>Dong, Hairong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1505-6766</orcidid><orcidid>https://orcid.org/0000-0003-4369-3401</orcidid></search><sort><creationdate>20220701</creationdate><title>Fast Restoring the Controllability of Networked Systems With Symmetric Weights</title><author>Cui, Yulong ; Wu, Mincheng ; He, Shibo ; Cheng, Peng ; Dong, Hairong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-673d668dfd71ededc713b94e166ddcdec0ecc1a0d8e3167ffebfd53f60bec41a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Approximation algorithms</topic><topic>Controllability</topic><topic>Controllability restoration</topic><topic>Directed graphs</topic><topic>Linear systems</topic><topic>network control</topic><topic>Polynomials</topic><topic>Segmentation</topic><topic>Set theory</topic><topic>sym-cactus segmentation</topic><topic>Symmetric matrices</topic><topic>temporal networks</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, Yulong</creatorcontrib><creatorcontrib>Wu, Mincheng</creatorcontrib><creatorcontrib>He, Shibo</creatorcontrib><creatorcontrib>Cheng, Peng</creatorcontrib><creatorcontrib>Dong, Hairong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on network science and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cui, Yulong</au><au>Wu, Mincheng</au><au>He, Shibo</au><au>Cheng, Peng</au><au>Dong, Hairong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast Restoring the Controllability of Networked Systems With Symmetric Weights</atitle><jtitle>IEEE transactions on network science and engineering</jtitle><stitle>TNSE</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>9</volume><issue>4</issue><spage>2098</spage><epage>2109</epage><pages>2098-2109</pages><issn>2327-4697</issn><eissn>2334-329X</eissn><coden>ITNSD5</coden><abstract>Structural controllability theory enables us to attain controllability of networked systems independent of edge weights. However, the theory is restricted to a strong assumption that all edge weights are independent of each other, limiting the practical application in most real life scenarios. In this paper, we develop a new theory to restore the controllability of networked systems with coupled edge weights, i.e., symmetric edge weights. Firstly, we show that an uncontrollable symmetric networked system can be transformed into a controllable temporal network by the sym-cactus-based segmentation method and provide the rigorous theoretical proof. Then we consider the least number of segmentation to restore the controllability as quickly as possible and reduce the problem to the classical set coverage problem. Finally, an approximate polynomial-time algorithm and a simulation example are provided to demonstrate the validity of our method.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TNSE.2022.3155296</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1505-6766</orcidid><orcidid>https://orcid.org/0000-0003-4369-3401</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2327-4697
ispartof IEEE transactions on network science and engineering, 2022-07, Vol.9 (4), p.2098-2109
issn 2327-4697
2334-329X
language eng
recordid cdi_ieee_primary_9737062
source IEEE Electronic Library (IEL)
subjects Algorithms
Approximation algorithms
Controllability
Controllability restoration
Directed graphs
Linear systems
network control
Polynomials
Segmentation
Set theory
sym-cactus segmentation
Symmetric matrices
temporal networks
Topology
title Fast Restoring the Controllability of Networked Systems With Symmetric Weights
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T09%3A16%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20Restoring%20the%20Controllability%20of%20Networked%20Systems%20With%20Symmetric%20Weights&rft.jtitle=IEEE%20transactions%20on%20network%20science%20and%20engineering&rft.au=Cui,%20Yulong&rft.date=2022-07-01&rft.volume=9&rft.issue=4&rft.spage=2098&rft.epage=2109&rft.pages=2098-2109&rft.issn=2327-4697&rft.eissn=2334-329X&rft.coden=ITNSD5&rft_id=info:doi/10.1109/TNSE.2022.3155296&rft_dat=%3Cproquest_RIE%3E2681955619%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2681955619&rft_id=info:pmid/&rft_ieee_id=9737062&rfr_iscdi=true