Design of Mid-Infrared Ge1-x Snx Homojunction p-i-n Photodiodes on Si Substrate
This work reports an optimal design and modeling of a high-performance normal-incidence GeSn homojunction p-i-n PDs on p-doped silicon (Si) substrate via Intrinsic-Si buffer. Specifically, we optimize the Sn concentration and the absorption layer thickness to simultaneously achieve high-speed, respo...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2022-04, Vol.22 (8), p.7743-7751 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7751 |
---|---|
container_issue | 8 |
container_start_page | 7743 |
container_title | IEEE sensors journal |
container_volume | 22 |
creator | Kumar, Harshvardhan Basu, Rikmantra |
description | This work reports an optimal design and modeling of a high-performance normal-incidence GeSn homojunction p-i-n PDs on p-doped silicon (Si) substrate via Intrinsic-Si buffer. Specifically, we optimize the Sn concentration and the absorption layer thickness to simultaneously achieve high-speed, responsivity, detectivity, and low-noise in the mid-infrared (MIR) spectral range (2- 5 ~\mu \text{m} ). We also show that a reduced defect density due to the homojunction GeSn layer can lead to a suppressed dark current. The photoresponse of the designed device was studied for the range between 1500-3000 nm, and the calculated responsivity is 3.26 A/W and 1.27 A/W at 2000 nm and 2500 nm, respectively for Sn = 9%. A specific detectivity, linear dynamic range (LDR), noise-equivalent power (NEP), and the signal-to-noise ratio (SNR) of 2.5\times 10^{10} Jones, 105.5 dB, 40.9\times 10^{-15}\text{W} Hz −0.5 , and 100.9 dB, respectively, were achieved at 2500 nm for Sn = 9%. Furthermore, the impact of intrinsic layer thickness and incident optical power was also studied in detail. The calculated results show that larger absorption layer thickness enhances the photocurrent, detectivity, LDR and SNR, however, the speed of the device degrades significantly. The increased incident optical power results in an increase in SNR and LDR of the device due to an increased photocurrent. The 3dB bandwidth was also calculated for varying Sn concentration and intrinsic layer thickness. The calculated result shows a 3dB bandwidth of > 26.2 GHz at −3V. All the calculated results show that the proposed device has significant potential applications in the MIR range. |
doi_str_mv | 10.1109/JSEN.2022.3159833 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9736938</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9736938</ieee_id><sourcerecordid>2650298382</sourcerecordid><originalsourceid>FETCH-LOGICAL-i482-79e9377808d90acac429e1e767872312a57f1edacab21cee341a2056f53deb5c3</originalsourceid><addsrcrecordid>eNotUM1KAzEYDKJgrT6AeAl4Ts3PZpMcpdZaqVbYHrwt6eZbTbFJTXahvr0r9TTDzDADg9A1oxPGqLl7rmavE045nwgmjRbiBI2YlJowVejTPy4oKYR6P0cXOW8pZUZJNUKrB8j-I-DY4hfvyCK0ySZweA6MHHAVDvgp7uK2D03nY8B74knAb5-xi85HBxkPYuVx1W9yl2wHl-istV8Zrv5xjNaPs_X0iSxX88X0fkl8oTlRBoxQSlPtDLWNbQpugIEqlVZcMG6lahm4wdlw1gCIgllOZdlK4WAjGzFGt8fafYrfPeSu3sY-hWGx5qWkfHhA8yF1c0x5AKj3ye9s-qmNEqURWvwCPttYYw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2650298382</pqid></control><display><type>article</type><title>Design of Mid-Infrared Ge1-x Snx Homojunction p-i-n Photodiodes on Si Substrate</title><source>IEEE Electronic Library (IEL)</source><creator>Kumar, Harshvardhan ; Basu, Rikmantra</creator><creatorcontrib>Kumar, Harshvardhan ; Basu, Rikmantra</creatorcontrib><description><![CDATA[This work reports an optimal design and modeling of a high-performance normal-incidence GeSn homojunction p-i-n PDs on p-doped silicon (Si) substrate via Intrinsic-Si buffer. Specifically, we optimize the Sn concentration and the absorption layer thickness to simultaneously achieve high-speed, responsivity, detectivity, and low-noise in the mid-infrared (MIR) spectral range (2-<inline-formula> <tex-math notation="LaTeX">5 ~\mu \text{m} </tex-math></inline-formula>). We also show that a reduced defect density due to the homojunction GeSn layer can lead to a suppressed dark current. The photoresponse of the designed device was studied for the range between 1500-3000 nm, and the calculated responsivity is 3.26 A/W and 1.27 A/W at 2000 nm and 2500 nm, respectively for Sn = 9%. A specific detectivity, linear dynamic range (LDR), noise-equivalent power (NEP), and the signal-to-noise ratio (SNR) of <inline-formula> <tex-math notation="LaTeX">2.5\times 10^{10} </tex-math></inline-formula> Jones, 105.5 dB, <inline-formula> <tex-math notation="LaTeX">40.9\times 10^{-15}\text{W} </tex-math></inline-formula> Hz −0.5 , and 100.9 dB, respectively, were achieved at 2500 nm for Sn = 9%. Furthermore, the impact of intrinsic layer thickness and incident optical power was also studied in detail. The calculated results show that larger absorption layer thickness enhances the photocurrent, detectivity, LDR and SNR, however, the speed of the device degrades significantly. The increased incident optical power results in an increase in SNR and LDR of the device due to an increased photocurrent. The 3dB bandwidth was also calculated for varying Sn concentration and intrinsic layer thickness. The calculated result shows a 3dB bandwidth of > 26.2 GHz at −3V. All the calculated results show that the proposed device has significant potential applications in the MIR range.]]></description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2022.3159833</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">p-i-n photodetector ; Germanium ; GeSn alloy ; homojunction ; Homojunctions ; Metals ; mid-infrared detector ; Optical buffering ; P-i-n photodiodes ; Photonic band gap ; PIN photodiodes ; Si photonics ; Silicon ; Silicon substrates ; Substrates</subject><ispartof>IEEE sensors journal, 2022-04, Vol.22 (8), p.7743-7751</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-4803-810X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9736938$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9736938$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kumar, Harshvardhan</creatorcontrib><creatorcontrib>Basu, Rikmantra</creatorcontrib><title>Design of Mid-Infrared Ge1-x Snx Homojunction p-i-n Photodiodes on Si Substrate</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description><![CDATA[This work reports an optimal design and modeling of a high-performance normal-incidence GeSn homojunction p-i-n PDs on p-doped silicon (Si) substrate via Intrinsic-Si buffer. Specifically, we optimize the Sn concentration and the absorption layer thickness to simultaneously achieve high-speed, responsivity, detectivity, and low-noise in the mid-infrared (MIR) spectral range (2-<inline-formula> <tex-math notation="LaTeX">5 ~\mu \text{m} </tex-math></inline-formula>). We also show that a reduced defect density due to the homojunction GeSn layer can lead to a suppressed dark current. The photoresponse of the designed device was studied for the range between 1500-3000 nm, and the calculated responsivity is 3.26 A/W and 1.27 A/W at 2000 nm and 2500 nm, respectively for Sn = 9%. A specific detectivity, linear dynamic range (LDR), noise-equivalent power (NEP), and the signal-to-noise ratio (SNR) of <inline-formula> <tex-math notation="LaTeX">2.5\times 10^{10} </tex-math></inline-formula> Jones, 105.5 dB, <inline-formula> <tex-math notation="LaTeX">40.9\times 10^{-15}\text{W} </tex-math></inline-formula> Hz −0.5 , and 100.9 dB, respectively, were achieved at 2500 nm for Sn = 9%. Furthermore, the impact of intrinsic layer thickness and incident optical power was also studied in detail. The calculated results show that larger absorption layer thickness enhances the photocurrent, detectivity, LDR and SNR, however, the speed of the device degrades significantly. The increased incident optical power results in an increase in SNR and LDR of the device due to an increased photocurrent. The 3dB bandwidth was also calculated for varying Sn concentration and intrinsic layer thickness. The calculated result shows a 3dB bandwidth of > 26.2 GHz at −3V. All the calculated results show that the proposed device has significant potential applications in the MIR range.]]></description><subject><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">p-i-n photodetector</subject><subject>Germanium</subject><subject>GeSn alloy</subject><subject>homojunction</subject><subject>Homojunctions</subject><subject>Metals</subject><subject>mid-infrared detector</subject><subject>Optical buffering</subject><subject>P-i-n photodiodes</subject><subject>Photonic band gap</subject><subject>PIN photodiodes</subject><subject>Si photonics</subject><subject>Silicon</subject><subject>Silicon substrates</subject><subject>Substrates</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNotUM1KAzEYDKJgrT6AeAl4Ts3PZpMcpdZaqVbYHrwt6eZbTbFJTXahvr0r9TTDzDADg9A1oxPGqLl7rmavE045nwgmjRbiBI2YlJowVejTPy4oKYR6P0cXOW8pZUZJNUKrB8j-I-DY4hfvyCK0ySZweA6MHHAVDvgp7uK2D03nY8B74knAb5-xi85HBxkPYuVx1W9yl2wHl-istV8Zrv5xjNaPs_X0iSxX88X0fkl8oTlRBoxQSlPtDLWNbQpugIEqlVZcMG6lahm4wdlw1gCIgllOZdlK4WAjGzFGt8fafYrfPeSu3sY-hWGx5qWkfHhA8yF1c0x5AKj3ye9s-qmNEqURWvwCPttYYw</recordid><startdate>20220415</startdate><enddate>20220415</enddate><creator>Kumar, Harshvardhan</creator><creator>Basu, Rikmantra</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4803-810X</orcidid></search><sort><creationdate>20220415</creationdate><title>Design of Mid-Infrared Ge1-x Snx Homojunction p-i-n Photodiodes on Si Substrate</title><author>Kumar, Harshvardhan ; Basu, Rikmantra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i482-79e9377808d90acac429e1e767872312a57f1edacab21cee341a2056f53deb5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">p-i-n photodetector</topic><topic>Germanium</topic><topic>GeSn alloy</topic><topic>homojunction</topic><topic>Homojunctions</topic><topic>Metals</topic><topic>mid-infrared detector</topic><topic>Optical buffering</topic><topic>P-i-n photodiodes</topic><topic>Photonic band gap</topic><topic>PIN photodiodes</topic><topic>Si photonics</topic><topic>Silicon</topic><topic>Silicon substrates</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Harshvardhan</creatorcontrib><creatorcontrib>Basu, Rikmantra</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kumar, Harshvardhan</au><au>Basu, Rikmantra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of Mid-Infrared Ge1-x Snx Homojunction p-i-n Photodiodes on Si Substrate</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2022-04-15</date><risdate>2022</risdate><volume>22</volume><issue>8</issue><spage>7743</spage><epage>7751</epage><pages>7743-7751</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract><![CDATA[This work reports an optimal design and modeling of a high-performance normal-incidence GeSn homojunction p-i-n PDs on p-doped silicon (Si) substrate via Intrinsic-Si buffer. Specifically, we optimize the Sn concentration and the absorption layer thickness to simultaneously achieve high-speed, responsivity, detectivity, and low-noise in the mid-infrared (MIR) spectral range (2-<inline-formula> <tex-math notation="LaTeX">5 ~\mu \text{m} </tex-math></inline-formula>). We also show that a reduced defect density due to the homojunction GeSn layer can lead to a suppressed dark current. The photoresponse of the designed device was studied for the range between 1500-3000 nm, and the calculated responsivity is 3.26 A/W and 1.27 A/W at 2000 nm and 2500 nm, respectively for Sn = 9%. A specific detectivity, linear dynamic range (LDR), noise-equivalent power (NEP), and the signal-to-noise ratio (SNR) of <inline-formula> <tex-math notation="LaTeX">2.5\times 10^{10} </tex-math></inline-formula> Jones, 105.5 dB, <inline-formula> <tex-math notation="LaTeX">40.9\times 10^{-15}\text{W} </tex-math></inline-formula> Hz −0.5 , and 100.9 dB, respectively, were achieved at 2500 nm for Sn = 9%. Furthermore, the impact of intrinsic layer thickness and incident optical power was also studied in detail. The calculated results show that larger absorption layer thickness enhances the photocurrent, detectivity, LDR and SNR, however, the speed of the device degrades significantly. The increased incident optical power results in an increase in SNR and LDR of the device due to an increased photocurrent. The 3dB bandwidth was also calculated for varying Sn concentration and intrinsic layer thickness. The calculated result shows a 3dB bandwidth of > 26.2 GHz at −3V. All the calculated results show that the proposed device has significant potential applications in the MIR range.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2022.3159833</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4803-810X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2022-04, Vol.22 (8), p.7743-7751 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_ieee_primary_9736938 |
source | IEEE Electronic Library (IEL) |
subjects | <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">p-i-n photodetector Germanium GeSn alloy homojunction Homojunctions Metals mid-infrared detector Optical buffering P-i-n photodiodes Photonic band gap PIN photodiodes Si photonics Silicon Silicon substrates Substrates |
title | Design of Mid-Infrared Ge1-x Snx Homojunction p-i-n Photodiodes on Si Substrate |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A05%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20Mid-Infrared%20Ge1-x%20Snx%20Homojunction%20p-i-n%20Photodiodes%20on%20Si%20Substrate&rft.jtitle=IEEE%20sensors%20journal&rft.au=Kumar,%20Harshvardhan&rft.date=2022-04-15&rft.volume=22&rft.issue=8&rft.spage=7743&rft.epage=7751&rft.pages=7743-7751&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2022.3159833&rft_dat=%3Cproquest_RIE%3E2650298382%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2650298382&rft_id=info:pmid/&rft_ieee_id=9736938&rfr_iscdi=true |