Task Co-Offloading for D2D-Assisted Mobile Edge Computing in Industrial Internet of Things

Mobile edge computing (MEC) and device-to-device (D2D) offloading are two promising paradigms in the industrial Internet of Things (IIoT). In this article, we investigate task co-offloading, where computing-intensive industrial tasks can be offloaded to MEC servers via cellular links or nearby IIoT...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial informatics 2023-01, Vol.19 (1), p.480-490
Hauptverfasser: Dai, Xingxia, Xiao, Zhu, Jiang, Hongbo, Alazab, Mamoun, Lui, John C. S., Dustdar, Schahram, Liu, Jiangchuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 490
container_issue 1
container_start_page 480
container_title IEEE transactions on industrial informatics
container_volume 19
creator Dai, Xingxia
Xiao, Zhu
Jiang, Hongbo
Alazab, Mamoun
Lui, John C. S.
Dustdar, Schahram
Liu, Jiangchuan
description Mobile edge computing (MEC) and device-to-device (D2D) offloading are two promising paradigms in the industrial Internet of Things (IIoT). In this article, we investigate task co-offloading, where computing-intensive industrial tasks can be offloaded to MEC servers via cellular links or nearby IIoT devices via D2D links. This co-offloading delivers small computation delay while avoiding network congestion. However, erratic movements, the selfish nature of devices and incomplete offloading information bring inherent challenges. Motivated by these, we propose a co-offloading framework, integrating migration cost and offloading willingness, in D2D-assisted MEC networks. Then, we investigate a learning-based task co-offloading algorithm, with the goal of minimal system cost (i.e., task delay and migration cost). The proposed algorithm enables IIoT devices to observe and learn the system cost from candidate edge nodes, thereby selecting the optimal edge node without requiring complete offloading information. Furthermore, we conduct simulations to verify the proposed co-offloading algorithm.
doi_str_mv 10.1109/TII.2022.3158974
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9735306</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9735306</ieee_id><sourcerecordid>2734387058</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-52b59151970d93f4fbb122f9df326f4b5e788d113514322f062293aa8f8f75873</originalsourceid><addsrcrecordid>eNo9kD1PwzAQhi0EEqWwI7FYYk45--LaHquWj0hFXcLCYiWNXVLSuNjpwL_HVSume6V73jvpIeSewYQx0E9lUUw4cD5BJpSW-QUZMZ2zDEDAZcpCsAw54DW5iXELgBJQj8hnWcVvOvfZyrnOV03bb6jzgS74IpvF2MbBNvTd121n6XOzsQnd7Q_DEWt7WvTNIQ6hrboUBxt6O1DvaPmV9vGWXLmqi_buPMfk4-W5nL9ly9VrMZ8tszXXbMgEr4VmgmkJjUaXu7pmnDvdOORTl9fCSqUaxlCwHNMCppxrrCrllJNCSRyTx9PdffA_BxsHs_WH0KeXhkvMUUkQKlFwotbBxxisM_vQ7qrwaxiYo0GTDJqjQXM2mCoPp0prrf3HtUSBMMU_FDhqKw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2734387058</pqid></control><display><type>article</type><title>Task Co-Offloading for D2D-Assisted Mobile Edge Computing in Industrial Internet of Things</title><source>IEEE Electronic Library (IEL)</source><creator>Dai, Xingxia ; Xiao, Zhu ; Jiang, Hongbo ; Alazab, Mamoun ; Lui, John C. S. ; Dustdar, Schahram ; Liu, Jiangchuan</creator><creatorcontrib>Dai, Xingxia ; Xiao, Zhu ; Jiang, Hongbo ; Alazab, Mamoun ; Lui, John C. S. ; Dustdar, Schahram ; Liu, Jiangchuan</creatorcontrib><description>Mobile edge computing (MEC) and device-to-device (D2D) offloading are two promising paradigms in the industrial Internet of Things (IIoT). In this article, we investigate task co-offloading, where computing-intensive industrial tasks can be offloaded to MEC servers via cellular links or nearby IIoT devices via D2D links. This co-offloading delivers small computation delay while avoiding network congestion. However, erratic movements, the selfish nature of devices and incomplete offloading information bring inherent challenges. Motivated by these, we propose a co-offloading framework, integrating migration cost and offloading willingness, in D2D-assisted MEC networks. Then, we investigate a learning-based task co-offloading algorithm, with the goal of minimal system cost (i.e., task delay and migration cost). The proposed algorithm enables IIoT devices to observe and learn the system cost from candidate edge nodes, thereby selecting the optimal edge node without requiring complete offloading information. Furthermore, we conduct simulations to verify the proposed co-offloading algorithm.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2022.3158974</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Costs ; Delays ; Device-to-device (D2D) offloading ; Device-to-device communication ; Edge computing ; Industrial applications ; Industrial Internet of Things ; industrial Internet of Things (IIoT) devices ; Internet of Things ; Machine learning ; Mobile computing ; mobile edge computing (MEC) ; Multi-armed bandit problems ; multiarmed bandit (MAB) ; Resource management ; Servers ; Task analysis</subject><ispartof>IEEE transactions on industrial informatics, 2023-01, Vol.19 (1), p.480-490</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-52b59151970d93f4fbb122f9df326f4b5e788d113514322f062293aa8f8f75873</citedby><cites>FETCH-LOGICAL-c291t-52b59151970d93f4fbb122f9df326f4b5e788d113514322f062293aa8f8f75873</cites><orcidid>0000-0001-7372-2539 ; 0000-0001-5540-9418 ; 0000-0001-6592-1984 ; 0000-0001-6872-8821 ; 0000-0001-5645-160X ; 0000-0001-7466-0384 ; 0000-0002-1928-3704</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9735306$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9735306$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dai, Xingxia</creatorcontrib><creatorcontrib>Xiao, Zhu</creatorcontrib><creatorcontrib>Jiang, Hongbo</creatorcontrib><creatorcontrib>Alazab, Mamoun</creatorcontrib><creatorcontrib>Lui, John C. S.</creatorcontrib><creatorcontrib>Dustdar, Schahram</creatorcontrib><creatorcontrib>Liu, Jiangchuan</creatorcontrib><title>Task Co-Offloading for D2D-Assisted Mobile Edge Computing in Industrial Internet of Things</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>Mobile edge computing (MEC) and device-to-device (D2D) offloading are two promising paradigms in the industrial Internet of Things (IIoT). In this article, we investigate task co-offloading, where computing-intensive industrial tasks can be offloaded to MEC servers via cellular links or nearby IIoT devices via D2D links. This co-offloading delivers small computation delay while avoiding network congestion. However, erratic movements, the selfish nature of devices and incomplete offloading information bring inherent challenges. Motivated by these, we propose a co-offloading framework, integrating migration cost and offloading willingness, in D2D-assisted MEC networks. Then, we investigate a learning-based task co-offloading algorithm, with the goal of minimal system cost (i.e., task delay and migration cost). The proposed algorithm enables IIoT devices to observe and learn the system cost from candidate edge nodes, thereby selecting the optimal edge node without requiring complete offloading information. Furthermore, we conduct simulations to verify the proposed co-offloading algorithm.</description><subject>Algorithms</subject><subject>Costs</subject><subject>Delays</subject><subject>Device-to-device (D2D) offloading</subject><subject>Device-to-device communication</subject><subject>Edge computing</subject><subject>Industrial applications</subject><subject>Industrial Internet of Things</subject><subject>industrial Internet of Things (IIoT) devices</subject><subject>Internet of Things</subject><subject>Machine learning</subject><subject>Mobile computing</subject><subject>mobile edge computing (MEC)</subject><subject>Multi-armed bandit problems</subject><subject>multiarmed bandit (MAB)</subject><subject>Resource management</subject><subject>Servers</subject><subject>Task analysis</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kD1PwzAQhi0EEqWwI7FYYk45--LaHquWj0hFXcLCYiWNXVLSuNjpwL_HVSume6V73jvpIeSewYQx0E9lUUw4cD5BJpSW-QUZMZ2zDEDAZcpCsAw54DW5iXELgBJQj8hnWcVvOvfZyrnOV03bb6jzgS74IpvF2MbBNvTd121n6XOzsQnd7Q_DEWt7WvTNIQ6hrboUBxt6O1DvaPmV9vGWXLmqi_buPMfk4-W5nL9ly9VrMZ8tszXXbMgEr4VmgmkJjUaXu7pmnDvdOORTl9fCSqUaxlCwHNMCppxrrCrllJNCSRyTx9PdffA_BxsHs_WH0KeXhkvMUUkQKlFwotbBxxisM_vQ7qrwaxiYo0GTDJqjQXM2mCoPp0prrf3HtUSBMMU_FDhqKw</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Dai, Xingxia</creator><creator>Xiao, Zhu</creator><creator>Jiang, Hongbo</creator><creator>Alazab, Mamoun</creator><creator>Lui, John C. S.</creator><creator>Dustdar, Schahram</creator><creator>Liu, Jiangchuan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7372-2539</orcidid><orcidid>https://orcid.org/0000-0001-5540-9418</orcidid><orcidid>https://orcid.org/0000-0001-6592-1984</orcidid><orcidid>https://orcid.org/0000-0001-6872-8821</orcidid><orcidid>https://orcid.org/0000-0001-5645-160X</orcidid><orcidid>https://orcid.org/0000-0001-7466-0384</orcidid><orcidid>https://orcid.org/0000-0002-1928-3704</orcidid></search><sort><creationdate>202301</creationdate><title>Task Co-Offloading for D2D-Assisted Mobile Edge Computing in Industrial Internet of Things</title><author>Dai, Xingxia ; Xiao, Zhu ; Jiang, Hongbo ; Alazab, Mamoun ; Lui, John C. S. ; Dustdar, Schahram ; Liu, Jiangchuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-52b59151970d93f4fbb122f9df326f4b5e788d113514322f062293aa8f8f75873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Costs</topic><topic>Delays</topic><topic>Device-to-device (D2D) offloading</topic><topic>Device-to-device communication</topic><topic>Edge computing</topic><topic>Industrial applications</topic><topic>Industrial Internet of Things</topic><topic>industrial Internet of Things (IIoT) devices</topic><topic>Internet of Things</topic><topic>Machine learning</topic><topic>Mobile computing</topic><topic>mobile edge computing (MEC)</topic><topic>Multi-armed bandit problems</topic><topic>multiarmed bandit (MAB)</topic><topic>Resource management</topic><topic>Servers</topic><topic>Task analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Dai, Xingxia</creatorcontrib><creatorcontrib>Xiao, Zhu</creatorcontrib><creatorcontrib>Jiang, Hongbo</creatorcontrib><creatorcontrib>Alazab, Mamoun</creatorcontrib><creatorcontrib>Lui, John C. S.</creatorcontrib><creatorcontrib>Dustdar, Schahram</creatorcontrib><creatorcontrib>Liu, Jiangchuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dai, Xingxia</au><au>Xiao, Zhu</au><au>Jiang, Hongbo</au><au>Alazab, Mamoun</au><au>Lui, John C. S.</au><au>Dustdar, Schahram</au><au>Liu, Jiangchuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Task Co-Offloading for D2D-Assisted Mobile Edge Computing in Industrial Internet of Things</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2023-01</date><risdate>2023</risdate><volume>19</volume><issue>1</issue><spage>480</spage><epage>490</epage><pages>480-490</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>Mobile edge computing (MEC) and device-to-device (D2D) offloading are two promising paradigms in the industrial Internet of Things (IIoT). In this article, we investigate task co-offloading, where computing-intensive industrial tasks can be offloaded to MEC servers via cellular links or nearby IIoT devices via D2D links. This co-offloading delivers small computation delay while avoiding network congestion. However, erratic movements, the selfish nature of devices and incomplete offloading information bring inherent challenges. Motivated by these, we propose a co-offloading framework, integrating migration cost and offloading willingness, in D2D-assisted MEC networks. Then, we investigate a learning-based task co-offloading algorithm, with the goal of minimal system cost (i.e., task delay and migration cost). The proposed algorithm enables IIoT devices to observe and learn the system cost from candidate edge nodes, thereby selecting the optimal edge node without requiring complete offloading information. Furthermore, we conduct simulations to verify the proposed co-offloading algorithm.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2022.3158974</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7372-2539</orcidid><orcidid>https://orcid.org/0000-0001-5540-9418</orcidid><orcidid>https://orcid.org/0000-0001-6592-1984</orcidid><orcidid>https://orcid.org/0000-0001-6872-8821</orcidid><orcidid>https://orcid.org/0000-0001-5645-160X</orcidid><orcidid>https://orcid.org/0000-0001-7466-0384</orcidid><orcidid>https://orcid.org/0000-0002-1928-3704</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1551-3203
ispartof IEEE transactions on industrial informatics, 2023-01, Vol.19 (1), p.480-490
issn 1551-3203
1941-0050
language eng
recordid cdi_ieee_primary_9735306
source IEEE Electronic Library (IEL)
subjects Algorithms
Costs
Delays
Device-to-device (D2D) offloading
Device-to-device communication
Edge computing
Industrial applications
Industrial Internet of Things
industrial Internet of Things (IIoT) devices
Internet of Things
Machine learning
Mobile computing
mobile edge computing (MEC)
Multi-armed bandit problems
multiarmed bandit (MAB)
Resource management
Servers
Task analysis
title Task Co-Offloading for D2D-Assisted Mobile Edge Computing in Industrial Internet of Things
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T17%3A16%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Task%20Co-Offloading%20for%20D2D-Assisted%20Mobile%20Edge%20Computing%20in%20Industrial%20Internet%20of%20Things&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Dai,%20Xingxia&rft.date=2023-01&rft.volume=19&rft.issue=1&rft.spage=480&rft.epage=490&rft.pages=480-490&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2022.3158974&rft_dat=%3Cproquest_RIE%3E2734387058%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2734387058&rft_id=info:pmid/&rft_ieee_id=9735306&rfr_iscdi=true