Task Co-Offloading for D2D-Assisted Mobile Edge Computing in Industrial Internet of Things
Mobile edge computing (MEC) and device-to-device (D2D) offloading are two promising paradigms in the industrial Internet of Things (IIoT). In this article, we investigate task co-offloading, where computing-intensive industrial tasks can be offloaded to MEC servers via cellular links or nearby IIoT...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial informatics 2023-01, Vol.19 (1), p.480-490 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 490 |
---|---|
container_issue | 1 |
container_start_page | 480 |
container_title | IEEE transactions on industrial informatics |
container_volume | 19 |
creator | Dai, Xingxia Xiao, Zhu Jiang, Hongbo Alazab, Mamoun Lui, John C. S. Dustdar, Schahram Liu, Jiangchuan |
description | Mobile edge computing (MEC) and device-to-device (D2D) offloading are two promising paradigms in the industrial Internet of Things (IIoT). In this article, we investigate task co-offloading, where computing-intensive industrial tasks can be offloaded to MEC servers via cellular links or nearby IIoT devices via D2D links. This co-offloading delivers small computation delay while avoiding network congestion. However, erratic movements, the selfish nature of devices and incomplete offloading information bring inherent challenges. Motivated by these, we propose a co-offloading framework, integrating migration cost and offloading willingness, in D2D-assisted MEC networks. Then, we investigate a learning-based task co-offloading algorithm, with the goal of minimal system cost (i.e., task delay and migration cost). The proposed algorithm enables IIoT devices to observe and learn the system cost from candidate edge nodes, thereby selecting the optimal edge node without requiring complete offloading information. Furthermore, we conduct simulations to verify the proposed co-offloading algorithm. |
doi_str_mv | 10.1109/TII.2022.3158974 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9735306</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9735306</ieee_id><sourcerecordid>2734387058</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-52b59151970d93f4fbb122f9df326f4b5e788d113514322f062293aa8f8f75873</originalsourceid><addsrcrecordid>eNo9kD1PwzAQhi0EEqWwI7FYYk45--LaHquWj0hFXcLCYiWNXVLSuNjpwL_HVSume6V73jvpIeSewYQx0E9lUUw4cD5BJpSW-QUZMZ2zDEDAZcpCsAw54DW5iXELgBJQj8hnWcVvOvfZyrnOV03bb6jzgS74IpvF2MbBNvTd121n6XOzsQnd7Q_DEWt7WvTNIQ6hrboUBxt6O1DvaPmV9vGWXLmqi_buPMfk4-W5nL9ly9VrMZ8tszXXbMgEr4VmgmkJjUaXu7pmnDvdOORTl9fCSqUaxlCwHNMCppxrrCrllJNCSRyTx9PdffA_BxsHs_WH0KeXhkvMUUkQKlFwotbBxxisM_vQ7qrwaxiYo0GTDJqjQXM2mCoPp0prrf3HtUSBMMU_FDhqKw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2734387058</pqid></control><display><type>article</type><title>Task Co-Offloading for D2D-Assisted Mobile Edge Computing in Industrial Internet of Things</title><source>IEEE Electronic Library (IEL)</source><creator>Dai, Xingxia ; Xiao, Zhu ; Jiang, Hongbo ; Alazab, Mamoun ; Lui, John C. S. ; Dustdar, Schahram ; Liu, Jiangchuan</creator><creatorcontrib>Dai, Xingxia ; Xiao, Zhu ; Jiang, Hongbo ; Alazab, Mamoun ; Lui, John C. S. ; Dustdar, Schahram ; Liu, Jiangchuan</creatorcontrib><description>Mobile edge computing (MEC) and device-to-device (D2D) offloading are two promising paradigms in the industrial Internet of Things (IIoT). In this article, we investigate task co-offloading, where computing-intensive industrial tasks can be offloaded to MEC servers via cellular links or nearby IIoT devices via D2D links. This co-offloading delivers small computation delay while avoiding network congestion. However, erratic movements, the selfish nature of devices and incomplete offloading information bring inherent challenges. Motivated by these, we propose a co-offloading framework, integrating migration cost and offloading willingness, in D2D-assisted MEC networks. Then, we investigate a learning-based task co-offloading algorithm, with the goal of minimal system cost (i.e., task delay and migration cost). The proposed algorithm enables IIoT devices to observe and learn the system cost from candidate edge nodes, thereby selecting the optimal edge node without requiring complete offloading information. Furthermore, we conduct simulations to verify the proposed co-offloading algorithm.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2022.3158974</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Costs ; Delays ; Device-to-device (D2D) offloading ; Device-to-device communication ; Edge computing ; Industrial applications ; Industrial Internet of Things ; industrial Internet of Things (IIoT) devices ; Internet of Things ; Machine learning ; Mobile computing ; mobile edge computing (MEC) ; Multi-armed bandit problems ; multiarmed bandit (MAB) ; Resource management ; Servers ; Task analysis</subject><ispartof>IEEE transactions on industrial informatics, 2023-01, Vol.19 (1), p.480-490</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-52b59151970d93f4fbb122f9df326f4b5e788d113514322f062293aa8f8f75873</citedby><cites>FETCH-LOGICAL-c291t-52b59151970d93f4fbb122f9df326f4b5e788d113514322f062293aa8f8f75873</cites><orcidid>0000-0001-7372-2539 ; 0000-0001-5540-9418 ; 0000-0001-6592-1984 ; 0000-0001-6872-8821 ; 0000-0001-5645-160X ; 0000-0001-7466-0384 ; 0000-0002-1928-3704</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9735306$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9735306$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dai, Xingxia</creatorcontrib><creatorcontrib>Xiao, Zhu</creatorcontrib><creatorcontrib>Jiang, Hongbo</creatorcontrib><creatorcontrib>Alazab, Mamoun</creatorcontrib><creatorcontrib>Lui, John C. S.</creatorcontrib><creatorcontrib>Dustdar, Schahram</creatorcontrib><creatorcontrib>Liu, Jiangchuan</creatorcontrib><title>Task Co-Offloading for D2D-Assisted Mobile Edge Computing in Industrial Internet of Things</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>Mobile edge computing (MEC) and device-to-device (D2D) offloading are two promising paradigms in the industrial Internet of Things (IIoT). In this article, we investigate task co-offloading, where computing-intensive industrial tasks can be offloaded to MEC servers via cellular links or nearby IIoT devices via D2D links. This co-offloading delivers small computation delay while avoiding network congestion. However, erratic movements, the selfish nature of devices and incomplete offloading information bring inherent challenges. Motivated by these, we propose a co-offloading framework, integrating migration cost and offloading willingness, in D2D-assisted MEC networks. Then, we investigate a learning-based task co-offloading algorithm, with the goal of minimal system cost (i.e., task delay and migration cost). The proposed algorithm enables IIoT devices to observe and learn the system cost from candidate edge nodes, thereby selecting the optimal edge node without requiring complete offloading information. Furthermore, we conduct simulations to verify the proposed co-offloading algorithm.</description><subject>Algorithms</subject><subject>Costs</subject><subject>Delays</subject><subject>Device-to-device (D2D) offloading</subject><subject>Device-to-device communication</subject><subject>Edge computing</subject><subject>Industrial applications</subject><subject>Industrial Internet of Things</subject><subject>industrial Internet of Things (IIoT) devices</subject><subject>Internet of Things</subject><subject>Machine learning</subject><subject>Mobile computing</subject><subject>mobile edge computing (MEC)</subject><subject>Multi-armed bandit problems</subject><subject>multiarmed bandit (MAB)</subject><subject>Resource management</subject><subject>Servers</subject><subject>Task analysis</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kD1PwzAQhi0EEqWwI7FYYk45--LaHquWj0hFXcLCYiWNXVLSuNjpwL_HVSume6V73jvpIeSewYQx0E9lUUw4cD5BJpSW-QUZMZ2zDEDAZcpCsAw54DW5iXELgBJQj8hnWcVvOvfZyrnOV03bb6jzgS74IpvF2MbBNvTd121n6XOzsQnd7Q_DEWt7WvTNIQ6hrboUBxt6O1DvaPmV9vGWXLmqi_buPMfk4-W5nL9ly9VrMZ8tszXXbMgEr4VmgmkJjUaXu7pmnDvdOORTl9fCSqUaxlCwHNMCppxrrCrllJNCSRyTx9PdffA_BxsHs_WH0KeXhkvMUUkQKlFwotbBxxisM_vQ7qrwaxiYo0GTDJqjQXM2mCoPp0prrf3HtUSBMMU_FDhqKw</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Dai, Xingxia</creator><creator>Xiao, Zhu</creator><creator>Jiang, Hongbo</creator><creator>Alazab, Mamoun</creator><creator>Lui, John C. S.</creator><creator>Dustdar, Schahram</creator><creator>Liu, Jiangchuan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7372-2539</orcidid><orcidid>https://orcid.org/0000-0001-5540-9418</orcidid><orcidid>https://orcid.org/0000-0001-6592-1984</orcidid><orcidid>https://orcid.org/0000-0001-6872-8821</orcidid><orcidid>https://orcid.org/0000-0001-5645-160X</orcidid><orcidid>https://orcid.org/0000-0001-7466-0384</orcidid><orcidid>https://orcid.org/0000-0002-1928-3704</orcidid></search><sort><creationdate>202301</creationdate><title>Task Co-Offloading for D2D-Assisted Mobile Edge Computing in Industrial Internet of Things</title><author>Dai, Xingxia ; Xiao, Zhu ; Jiang, Hongbo ; Alazab, Mamoun ; Lui, John C. S. ; Dustdar, Schahram ; Liu, Jiangchuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-52b59151970d93f4fbb122f9df326f4b5e788d113514322f062293aa8f8f75873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Costs</topic><topic>Delays</topic><topic>Device-to-device (D2D) offloading</topic><topic>Device-to-device communication</topic><topic>Edge computing</topic><topic>Industrial applications</topic><topic>Industrial Internet of Things</topic><topic>industrial Internet of Things (IIoT) devices</topic><topic>Internet of Things</topic><topic>Machine learning</topic><topic>Mobile computing</topic><topic>mobile edge computing (MEC)</topic><topic>Multi-armed bandit problems</topic><topic>multiarmed bandit (MAB)</topic><topic>Resource management</topic><topic>Servers</topic><topic>Task analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Dai, Xingxia</creatorcontrib><creatorcontrib>Xiao, Zhu</creatorcontrib><creatorcontrib>Jiang, Hongbo</creatorcontrib><creatorcontrib>Alazab, Mamoun</creatorcontrib><creatorcontrib>Lui, John C. S.</creatorcontrib><creatorcontrib>Dustdar, Schahram</creatorcontrib><creatorcontrib>Liu, Jiangchuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dai, Xingxia</au><au>Xiao, Zhu</au><au>Jiang, Hongbo</au><au>Alazab, Mamoun</au><au>Lui, John C. S.</au><au>Dustdar, Schahram</au><au>Liu, Jiangchuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Task Co-Offloading for D2D-Assisted Mobile Edge Computing in Industrial Internet of Things</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2023-01</date><risdate>2023</risdate><volume>19</volume><issue>1</issue><spage>480</spage><epage>490</epage><pages>480-490</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>Mobile edge computing (MEC) and device-to-device (D2D) offloading are two promising paradigms in the industrial Internet of Things (IIoT). In this article, we investigate task co-offloading, where computing-intensive industrial tasks can be offloaded to MEC servers via cellular links or nearby IIoT devices via D2D links. This co-offloading delivers small computation delay while avoiding network congestion. However, erratic movements, the selfish nature of devices and incomplete offloading information bring inherent challenges. Motivated by these, we propose a co-offloading framework, integrating migration cost and offloading willingness, in D2D-assisted MEC networks. Then, we investigate a learning-based task co-offloading algorithm, with the goal of minimal system cost (i.e., task delay and migration cost). The proposed algorithm enables IIoT devices to observe and learn the system cost from candidate edge nodes, thereby selecting the optimal edge node without requiring complete offloading information. Furthermore, we conduct simulations to verify the proposed co-offloading algorithm.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2022.3158974</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7372-2539</orcidid><orcidid>https://orcid.org/0000-0001-5540-9418</orcidid><orcidid>https://orcid.org/0000-0001-6592-1984</orcidid><orcidid>https://orcid.org/0000-0001-6872-8821</orcidid><orcidid>https://orcid.org/0000-0001-5645-160X</orcidid><orcidid>https://orcid.org/0000-0001-7466-0384</orcidid><orcidid>https://orcid.org/0000-0002-1928-3704</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1551-3203 |
ispartof | IEEE transactions on industrial informatics, 2023-01, Vol.19 (1), p.480-490 |
issn | 1551-3203 1941-0050 |
language | eng |
recordid | cdi_ieee_primary_9735306 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Costs Delays Device-to-device (D2D) offloading Device-to-device communication Edge computing Industrial applications Industrial Internet of Things industrial Internet of Things (IIoT) devices Internet of Things Machine learning Mobile computing mobile edge computing (MEC) Multi-armed bandit problems multiarmed bandit (MAB) Resource management Servers Task analysis |
title | Task Co-Offloading for D2D-Assisted Mobile Edge Computing in Industrial Internet of Things |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T17%3A16%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Task%20Co-Offloading%20for%20D2D-Assisted%20Mobile%20Edge%20Computing%20in%20Industrial%20Internet%20of%20Things&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Dai,%20Xingxia&rft.date=2023-01&rft.volume=19&rft.issue=1&rft.spage=480&rft.epage=490&rft.pages=480-490&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2022.3158974&rft_dat=%3Cproquest_RIE%3E2734387058%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2734387058&rft_id=info:pmid/&rft_ieee_id=9735306&rfr_iscdi=true |