A Novel Adaptively Binarizing Magnitude Vector Method in Local Binary Pattern Based Framework for Texture Classification
Local Binary Pattern (LBP) based framework only uses a scalar threshold to binarize all magnitude vectors in P different directions around each center pixel of a texture image. Hence, the original LBP-based framework, in fact, can not precisely extract different magnitude features in P different dir...
Gespeichert in:
Veröffentlicht in: | IEEE signal processing letters 2022, Vol.29, p.852-856 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 856 |
---|---|
container_issue | |
container_start_page | 852 |
container_title | IEEE signal processing letters |
container_volume | 29 |
creator | Hu, Shiqi Pan, Zhibin Dong, Jing Ren, Xincheng |
description | Local Binary Pattern (LBP) based framework only uses a scalar threshold to binarize all magnitude vectors in P different directions around each center pixel of a texture image. Hence, the original LBP-based framework, in fact, can not precisely extract different magnitude features in P different directions around each center pixel. Furthermore, the value of magnitude vectors can have dramatic changes from coarse areas to flat areas in the same texture image. Therefore, using a scalar threshold calculated from whole texture image can not precisely binarize all magnitude vectors in coarse areas and flat areas simultaneously. To overcome these two drawbacks, we propose a novel adaptively binarizing magnitude vector (ABMV) method. Firstly, we adaptively calculate the average vector threshold \boldsymbol{\vec{t}_{P}} with P different directional values of all magnitude vectors to replace the scalar threshold t to binarize the magnitude vectors. The proposed ABMV method can more precisely extract the different magnitude features in P different directions around each center pixel. Secondly, we divide the original texture image into smaller sub-images and adaptively extract their average vector threshold from each sub-image separately. Because the correlation of the pixels in the same sub-image is stronger than that in a whole texture image, the ABMV method can more precisely extract different magnitude features from either coarse areas or flat areas. Finally, we introduce the proposed ABMV method into LBP-based framework. Extensive experiments are conducted on five representative texture databases: Outex, UIUC, CUReT, XU_HR and ALOT database. After introducing the ABMV method into CLBP, CLBC, BRINT and CJLBP, the classification accuracy and the robustness to noise of these methods can be significantly improved. |
doi_str_mv | 10.1109/LSP.2022.3158199 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9732688</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9732688</ieee_id><sourcerecordid>2645987998</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-1a7f643f1afd7f6c889a7c4ff4afa290198d59197a9e4c62da7edd45826b17193</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhhdR8PMueAl43ppkvzLHWqwKrQpWr8u4mWi0bmqSauuvN1LxNO_heWeYJ8uOBR8IweFscn83kFzKQSEqJQC2sj1RVSqXRS22U-YNzwG42s32Q3jlnCuhqr1sNWQ37pPmbKhxEW1Ka3Zue_T22_bPbIrPvY1LTeyRuug8m1J8cZrZnk1ch_MNu2Z3GCP5np1jIM3GHt_py_k3ZlJlRqu49MRGcwzBGtthtK4_zHYMzgMd_c2D7GF8MRtd5ZPby-vRcJJ3EkTMBTamLgsj0OiUOqUAm640pkSDErgApSsQ0CBQ2dVSY0Nal5WS9ZNoBBQH2elm78K7jyWF2L66pe_TyVbWZQWqAVCJ4huq8y4ET6ZdePuePmsFb3_9tslv--u3_fObKiebiiWifxyaQtZKFT_N5Hfh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2645987998</pqid></control><display><type>article</type><title>A Novel Adaptively Binarizing Magnitude Vector Method in Local Binary Pattern Based Framework for Texture Classification</title><source>IEEE Electronic Library (IEL)</source><creator>Hu, Shiqi ; Pan, Zhibin ; Dong, Jing ; Ren, Xincheng</creator><creatorcontrib>Hu, Shiqi ; Pan, Zhibin ; Dong, Jing ; Ren, Xincheng</creatorcontrib><description>Local Binary Pattern (LBP) based framework only uses a scalar threshold to binarize all magnitude vectors in P different directions around each center pixel of a texture image. Hence, the original LBP-based framework, in fact, can not precisely extract different magnitude features in P different directions around each center pixel. Furthermore, the value of magnitude vectors can have dramatic changes from coarse areas to flat areas in the same texture image. Therefore, using a scalar threshold calculated from whole texture image can not precisely binarize all magnitude vectors in coarse areas and flat areas simultaneously. To overcome these two drawbacks, we propose a novel adaptively binarizing magnitude vector (ABMV) method. Firstly, we adaptively calculate the average vector threshold <inline-formula><tex-math notation="LaTeX">\boldsymbol{\vec{t}_{P}}</tex-math></inline-formula> with P different directional values of all magnitude vectors to replace the scalar threshold t to binarize the magnitude vectors. The proposed ABMV method can more precisely extract the different magnitude features in P different directions around each center pixel. Secondly, we divide the original texture image into smaller sub-images and adaptively extract their average vector threshold from each sub-image separately. Because the correlation of the pixels in the same sub-image is stronger than that in a whole texture image, the ABMV method can more precisely extract different magnitude features from either coarse areas or flat areas. Finally, we introduce the proposed ABMV method into LBP-based framework. Extensive experiments are conducted on five representative texture databases: Outex, UIUC, CUReT, XU_HR and ALOT database. After introducing the ABMV method into CLBP, CLBC, BRINT and CJLBP, the classification accuracy and the robustness to noise of these methods can be significantly improved.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2022.3158199</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>adaptively binarizing magnitude vector (ABMV) ; average vector threshold ; Classification ; Correlation ; Data mining ; Electronic mail ; Feature extraction ; Local binary pattern (LBP) ; Mathematical analysis ; Pixels ; Robustness ; Texture ; texture classification ; threshold</subject><ispartof>IEEE signal processing letters, 2022, Vol.29, p.852-856</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-1a7f643f1afd7f6c889a7c4ff4afa290198d59197a9e4c62da7edd45826b17193</citedby><cites>FETCH-LOGICAL-c291t-1a7f643f1afd7f6c889a7c4ff4afa290198d59197a9e4c62da7edd45826b17193</cites><orcidid>0000-0002-4695-311X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9732688$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9732688$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hu, Shiqi</creatorcontrib><creatorcontrib>Pan, Zhibin</creatorcontrib><creatorcontrib>Dong, Jing</creatorcontrib><creatorcontrib>Ren, Xincheng</creatorcontrib><title>A Novel Adaptively Binarizing Magnitude Vector Method in Local Binary Pattern Based Framework for Texture Classification</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>Local Binary Pattern (LBP) based framework only uses a scalar threshold to binarize all magnitude vectors in P different directions around each center pixel of a texture image. Hence, the original LBP-based framework, in fact, can not precisely extract different magnitude features in P different directions around each center pixel. Furthermore, the value of magnitude vectors can have dramatic changes from coarse areas to flat areas in the same texture image. Therefore, using a scalar threshold calculated from whole texture image can not precisely binarize all magnitude vectors in coarse areas and flat areas simultaneously. To overcome these two drawbacks, we propose a novel adaptively binarizing magnitude vector (ABMV) method. Firstly, we adaptively calculate the average vector threshold <inline-formula><tex-math notation="LaTeX">\boldsymbol{\vec{t}_{P}}</tex-math></inline-formula> with P different directional values of all magnitude vectors to replace the scalar threshold t to binarize the magnitude vectors. The proposed ABMV method can more precisely extract the different magnitude features in P different directions around each center pixel. Secondly, we divide the original texture image into smaller sub-images and adaptively extract their average vector threshold from each sub-image separately. Because the correlation of the pixels in the same sub-image is stronger than that in a whole texture image, the ABMV method can more precisely extract different magnitude features from either coarse areas or flat areas. Finally, we introduce the proposed ABMV method into LBP-based framework. Extensive experiments are conducted on five representative texture databases: Outex, UIUC, CUReT, XU_HR and ALOT database. After introducing the ABMV method into CLBP, CLBC, BRINT and CJLBP, the classification accuracy and the robustness to noise of these methods can be significantly improved.</description><subject>adaptively binarizing magnitude vector (ABMV)</subject><subject>average vector threshold</subject><subject>Classification</subject><subject>Correlation</subject><subject>Data mining</subject><subject>Electronic mail</subject><subject>Feature extraction</subject><subject>Local binary pattern (LBP)</subject><subject>Mathematical analysis</subject><subject>Pixels</subject><subject>Robustness</subject><subject>Texture</subject><subject>texture classification</subject><subject>threshold</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhhdR8PMueAl43ppkvzLHWqwKrQpWr8u4mWi0bmqSauuvN1LxNO_heWeYJ8uOBR8IweFscn83kFzKQSEqJQC2sj1RVSqXRS22U-YNzwG42s32Q3jlnCuhqr1sNWQ37pPmbKhxEW1Ka3Zue_T22_bPbIrPvY1LTeyRuug8m1J8cZrZnk1ch_MNu2Z3GCP5np1jIM3GHt_py_k3ZlJlRqu49MRGcwzBGtthtK4_zHYMzgMd_c2D7GF8MRtd5ZPby-vRcJJ3EkTMBTamLgsj0OiUOqUAm640pkSDErgApSsQ0CBQ2dVSY0Nal5WS9ZNoBBQH2elm78K7jyWF2L66pe_TyVbWZQWqAVCJ4huq8y4ET6ZdePuePmsFb3_9tslv--u3_fObKiebiiWifxyaQtZKFT_N5Hfh</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Hu, Shiqi</creator><creator>Pan, Zhibin</creator><creator>Dong, Jing</creator><creator>Ren, Xincheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4695-311X</orcidid></search><sort><creationdate>2022</creationdate><title>A Novel Adaptively Binarizing Magnitude Vector Method in Local Binary Pattern Based Framework for Texture Classification</title><author>Hu, Shiqi ; Pan, Zhibin ; Dong, Jing ; Ren, Xincheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-1a7f643f1afd7f6c889a7c4ff4afa290198d59197a9e4c62da7edd45826b17193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>adaptively binarizing magnitude vector (ABMV)</topic><topic>average vector threshold</topic><topic>Classification</topic><topic>Correlation</topic><topic>Data mining</topic><topic>Electronic mail</topic><topic>Feature extraction</topic><topic>Local binary pattern (LBP)</topic><topic>Mathematical analysis</topic><topic>Pixels</topic><topic>Robustness</topic><topic>Texture</topic><topic>texture classification</topic><topic>threshold</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Shiqi</creatorcontrib><creatorcontrib>Pan, Zhibin</creatorcontrib><creatorcontrib>Dong, Jing</creatorcontrib><creatorcontrib>Ren, Xincheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hu, Shiqi</au><au>Pan, Zhibin</au><au>Dong, Jing</au><au>Ren, Xincheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Adaptively Binarizing Magnitude Vector Method in Local Binary Pattern Based Framework for Texture Classification</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2022</date><risdate>2022</risdate><volume>29</volume><spage>852</spage><epage>856</epage><pages>852-856</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>Local Binary Pattern (LBP) based framework only uses a scalar threshold to binarize all magnitude vectors in P different directions around each center pixel of a texture image. Hence, the original LBP-based framework, in fact, can not precisely extract different magnitude features in P different directions around each center pixel. Furthermore, the value of magnitude vectors can have dramatic changes from coarse areas to flat areas in the same texture image. Therefore, using a scalar threshold calculated from whole texture image can not precisely binarize all magnitude vectors in coarse areas and flat areas simultaneously. To overcome these two drawbacks, we propose a novel adaptively binarizing magnitude vector (ABMV) method. Firstly, we adaptively calculate the average vector threshold <inline-formula><tex-math notation="LaTeX">\boldsymbol{\vec{t}_{P}}</tex-math></inline-formula> with P different directional values of all magnitude vectors to replace the scalar threshold t to binarize the magnitude vectors. The proposed ABMV method can more precisely extract the different magnitude features in P different directions around each center pixel. Secondly, we divide the original texture image into smaller sub-images and adaptively extract their average vector threshold from each sub-image separately. Because the correlation of the pixels in the same sub-image is stronger than that in a whole texture image, the ABMV method can more precisely extract different magnitude features from either coarse areas or flat areas. Finally, we introduce the proposed ABMV method into LBP-based framework. Extensive experiments are conducted on five representative texture databases: Outex, UIUC, CUReT, XU_HR and ALOT database. After introducing the ABMV method into CLBP, CLBC, BRINT and CJLBP, the classification accuracy and the robustness to noise of these methods can be significantly improved.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LSP.2022.3158199</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-4695-311X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1070-9908 |
ispartof | IEEE signal processing letters, 2022, Vol.29, p.852-856 |
issn | 1070-9908 1558-2361 |
language | eng |
recordid | cdi_ieee_primary_9732688 |
source | IEEE Electronic Library (IEL) |
subjects | adaptively binarizing magnitude vector (ABMV) average vector threshold Classification Correlation Data mining Electronic mail Feature extraction Local binary pattern (LBP) Mathematical analysis Pixels Robustness Texture texture classification threshold |
title | A Novel Adaptively Binarizing Magnitude Vector Method in Local Binary Pattern Based Framework for Texture Classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T02%3A19%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Adaptively%20Binarizing%20Magnitude%20Vector%20Method%20in%20Local%20Binary%20Pattern%20Based%20Framework%20for%20Texture%20Classification&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Hu,%20Shiqi&rft.date=2022&rft.volume=29&rft.spage=852&rft.epage=856&rft.pages=852-856&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2022.3158199&rft_dat=%3Cproquest_RIE%3E2645987998%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2645987998&rft_id=info:pmid/&rft_ieee_id=9732688&rfr_iscdi=true |