DeepAir: Deep Reinforcement Learning for Adaptive Intrusion Response in Software-Defined Networks

In this paper, we propose an adaptive intrusion response solution based on deep reinforcement learning, namely DeepAir, to effectively defend against cyber-attacks in Software-Defined Networks (SDN). Specifically, we first study an intrusion response system (IRS) that operates at the SDN control pla...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE eTransactions on network and service management 2022-09, Vol.19 (3), p.2207-2218
Hauptverfasser: Phan, Trung V., Bauschert, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2218
container_issue 3
container_start_page 2207
container_title IEEE eTransactions on network and service management
container_volume 19
creator Phan, Trung V.
Bauschert, Thomas
description In this paper, we propose an adaptive intrusion response solution based on deep reinforcement learning, namely DeepAir, to effectively defend against cyber-attacks in Software-Defined Networks (SDN). Specifically, we first study an intrusion response system (IRS) that operates at the SDN control plane. Next, we propose a dynamic intrusion response solution to maximize the attack defense performance while minimizing the negative impact on benign traffic forwarding and the policy deployment cost in the SDN data plane. Then, we model the intrusion response system based on a Markov decision process (MDP) approach and formulate the related optimization problem. Afterward, we develop a Double Deep {Q} -Network based intrusion response control algorithm to assist the intrusion response system to quickly obtain the optimal intrusion response policy. In our case study, we consider denial-of-service (DoS) attacks-the performance evaluation results demonstrate that DeepAir can effectively prevent malicious packets from arriving at the victim in all considered DoS attack scenarios, i.e., approximately 85% of attack packets are dropped. Moreover, by applying the optimal intrusion response policy, DeepAir can significantly reduce the ratio of Quality-of-Service violated traffic flows compared to a {Q} -learning based approach (by 70%), and to two existing solutions, i.e., GATE (by 75%) and GTAC-IRS (by 80%), respectively.
doi_str_mv 10.1109/TNSM.2022.3158468
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9732448</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9732448</ieee_id><sourcerecordid>2723899558</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-9adbcf93a48fdf02aab1eda448f7fef99301a7d1638146504c216cc57f0e208d3</originalsourceid><addsrcrecordid>eNpNkFtLAzEQhYMoWKs_QHwJ-Lw1l70kvpV6K9QKtj6HdHciqTZZk9Tiv3eXFvFpzgznzAwfQpeUjCgl8mY5XzyPGGFsxGkh8lIcoQGVnGV5wavjf_oUncW4JqQQVLIB0ncA7diGW9wL_ArWGR9q2IBLeAY6OOvecTfC40a3yX4DnroUttF617lj610EbB1eeJN2OkB2B8Y6aPAc0s6Hj3iOToz-jHBxqEP09nC_nDxls5fH6WQ8y2omecqkbla1kVznwjSGMK1XFBqdd21lwEjJCdVVQ0suaF4WJK8ZLeu6qAwBRkTDh-h6v7cN_msLMam13wbXnVSsYlxIWRSic9G9qw4-xgBGtcFudPhRlKiepOpJqp6kOpDsMlf7jAWAP7-sOOu-478Y7HBx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2723899558</pqid></control><display><type>article</type><title>DeepAir: Deep Reinforcement Learning for Adaptive Intrusion Response in Software-Defined Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Phan, Trung V. ; Bauschert, Thomas</creator><creatorcontrib>Phan, Trung V. ; Bauschert, Thomas</creatorcontrib><description><![CDATA[In this paper, we propose an adaptive intrusion response solution based on deep reinforcement learning, namely DeepAir, to effectively defend against cyber-attacks in Software-Defined Networks (SDN). Specifically, we first study an intrusion response system (IRS) that operates at the SDN control plane. Next, we propose a dynamic intrusion response solution to maximize the attack defense performance while minimizing the negative impact on benign traffic forwarding and the policy deployment cost in the SDN data plane. Then, we model the intrusion response system based on a Markov decision process (MDP) approach and formulate the related optimization problem. Afterward, we develop a Double Deep <inline-formula> <tex-math notation="LaTeX">{Q} </tex-math></inline-formula>-Network based intrusion response control algorithm to assist the intrusion response system to quickly obtain the optimal intrusion response policy. In our case study, we consider denial-of-service (DoS) attacks-the performance evaluation results demonstrate that DeepAir can effectively prevent malicious packets from arriving at the victim in all considered DoS attack scenarios, i.e., approximately 85% of attack packets are dropped. Moreover, by applying the optimal intrusion response policy, DeepAir can significantly reduce the ratio of Quality-of-Service violated traffic flows compared to a <inline-formula> <tex-math notation="LaTeX">{Q} </tex-math></inline-formula>-learning based approach (by 70%), and to two existing solutions, i.e., GATE (by 75%) and GTAC-IRS (by 80%), respectively.]]></description><identifier>ISSN: 1932-4537</identifier><identifier>EISSN: 1932-4537</identifier><identifier>DOI: 10.1109/TNSM.2022.3158468</identifier><identifier>CODEN: ITNSC4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Control algorithms ; Control systems ; Control theory ; cyber-attacks and software-defined networks ; Cybersecurity ; Deep learning ; deep reinforcement learning ; Denial of service attacks ; Intrusion ; Intrusion detection ; Intrusion response system ; Logic gates ; Machine learning ; Markov processes ; Optimization ; Performance evaluation ; Q-learning ; Security ; Software-defined networking ; Traffic flow</subject><ispartof>IEEE eTransactions on network and service management, 2022-09, Vol.19 (3), p.2207-2218</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-9adbcf93a48fdf02aab1eda448f7fef99301a7d1638146504c216cc57f0e208d3</citedby><cites>FETCH-LOGICAL-c293t-9adbcf93a48fdf02aab1eda448f7fef99301a7d1638146504c216cc57f0e208d3</cites><orcidid>0000-0002-4018-0275</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9732448$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9732448$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Phan, Trung V.</creatorcontrib><creatorcontrib>Bauschert, Thomas</creatorcontrib><title>DeepAir: Deep Reinforcement Learning for Adaptive Intrusion Response in Software-Defined Networks</title><title>IEEE eTransactions on network and service management</title><addtitle>T-NSM</addtitle><description><![CDATA[In this paper, we propose an adaptive intrusion response solution based on deep reinforcement learning, namely DeepAir, to effectively defend against cyber-attacks in Software-Defined Networks (SDN). Specifically, we first study an intrusion response system (IRS) that operates at the SDN control plane. Next, we propose a dynamic intrusion response solution to maximize the attack defense performance while minimizing the negative impact on benign traffic forwarding and the policy deployment cost in the SDN data plane. Then, we model the intrusion response system based on a Markov decision process (MDP) approach and formulate the related optimization problem. Afterward, we develop a Double Deep <inline-formula> <tex-math notation="LaTeX">{Q} </tex-math></inline-formula>-Network based intrusion response control algorithm to assist the intrusion response system to quickly obtain the optimal intrusion response policy. In our case study, we consider denial-of-service (DoS) attacks-the performance evaluation results demonstrate that DeepAir can effectively prevent malicious packets from arriving at the victim in all considered DoS attack scenarios, i.e., approximately 85% of attack packets are dropped. Moreover, by applying the optimal intrusion response policy, DeepAir can significantly reduce the ratio of Quality-of-Service violated traffic flows compared to a <inline-formula> <tex-math notation="LaTeX">{Q} </tex-math></inline-formula>-learning based approach (by 70%), and to two existing solutions, i.e., GATE (by 75%) and GTAC-IRS (by 80%), respectively.]]></description><subject>Algorithms</subject><subject>Control algorithms</subject><subject>Control systems</subject><subject>Control theory</subject><subject>cyber-attacks and software-defined networks</subject><subject>Cybersecurity</subject><subject>Deep learning</subject><subject>deep reinforcement learning</subject><subject>Denial of service attacks</subject><subject>Intrusion</subject><subject>Intrusion detection</subject><subject>Intrusion response system</subject><subject>Logic gates</subject><subject>Machine learning</subject><subject>Markov processes</subject><subject>Optimization</subject><subject>Performance evaluation</subject><subject>Q-learning</subject><subject>Security</subject><subject>Software-defined networking</subject><subject>Traffic flow</subject><issn>1932-4537</issn><issn>1932-4537</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkFtLAzEQhYMoWKs_QHwJ-Lw1l70kvpV6K9QKtj6HdHciqTZZk9Tiv3eXFvFpzgznzAwfQpeUjCgl8mY5XzyPGGFsxGkh8lIcoQGVnGV5wavjf_oUncW4JqQQVLIB0ncA7diGW9wL_ArWGR9q2IBLeAY6OOvecTfC40a3yX4DnroUttF617lj610EbB1eeJN2OkB2B8Y6aPAc0s6Hj3iOToz-jHBxqEP09nC_nDxls5fH6WQ8y2omecqkbla1kVznwjSGMK1XFBqdd21lwEjJCdVVQ0suaF4WJK8ZLeu6qAwBRkTDh-h6v7cN_msLMam13wbXnVSsYlxIWRSic9G9qw4-xgBGtcFudPhRlKiepOpJqp6kOpDsMlf7jAWAP7-sOOu-478Y7HBx</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>Phan, Trung V.</creator><creator>Bauschert, Thomas</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4018-0275</orcidid></search><sort><creationdate>202209</creationdate><title>DeepAir: Deep Reinforcement Learning for Adaptive Intrusion Response in Software-Defined Networks</title><author>Phan, Trung V. ; Bauschert, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-9adbcf93a48fdf02aab1eda448f7fef99301a7d1638146504c216cc57f0e208d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Control algorithms</topic><topic>Control systems</topic><topic>Control theory</topic><topic>cyber-attacks and software-defined networks</topic><topic>Cybersecurity</topic><topic>Deep learning</topic><topic>deep reinforcement learning</topic><topic>Denial of service attacks</topic><topic>Intrusion</topic><topic>Intrusion detection</topic><topic>Intrusion response system</topic><topic>Logic gates</topic><topic>Machine learning</topic><topic>Markov processes</topic><topic>Optimization</topic><topic>Performance evaluation</topic><topic>Q-learning</topic><topic>Security</topic><topic>Software-defined networking</topic><topic>Traffic flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Phan, Trung V.</creatorcontrib><creatorcontrib>Bauschert, Thomas</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE eTransactions on network and service management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Phan, Trung V.</au><au>Bauschert, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DeepAir: Deep Reinforcement Learning for Adaptive Intrusion Response in Software-Defined Networks</atitle><jtitle>IEEE eTransactions on network and service management</jtitle><stitle>T-NSM</stitle><date>2022-09</date><risdate>2022</risdate><volume>19</volume><issue>3</issue><spage>2207</spage><epage>2218</epage><pages>2207-2218</pages><issn>1932-4537</issn><eissn>1932-4537</eissn><coden>ITNSC4</coden><abstract><![CDATA[In this paper, we propose an adaptive intrusion response solution based on deep reinforcement learning, namely DeepAir, to effectively defend against cyber-attacks in Software-Defined Networks (SDN). Specifically, we first study an intrusion response system (IRS) that operates at the SDN control plane. Next, we propose a dynamic intrusion response solution to maximize the attack defense performance while minimizing the negative impact on benign traffic forwarding and the policy deployment cost in the SDN data plane. Then, we model the intrusion response system based on a Markov decision process (MDP) approach and formulate the related optimization problem. Afterward, we develop a Double Deep <inline-formula> <tex-math notation="LaTeX">{Q} </tex-math></inline-formula>-Network based intrusion response control algorithm to assist the intrusion response system to quickly obtain the optimal intrusion response policy. In our case study, we consider denial-of-service (DoS) attacks-the performance evaluation results demonstrate that DeepAir can effectively prevent malicious packets from arriving at the victim in all considered DoS attack scenarios, i.e., approximately 85% of attack packets are dropped. Moreover, by applying the optimal intrusion response policy, DeepAir can significantly reduce the ratio of Quality-of-Service violated traffic flows compared to a <inline-formula> <tex-math notation="LaTeX">{Q} </tex-math></inline-formula>-learning based approach (by 70%), and to two existing solutions, i.e., GATE (by 75%) and GTAC-IRS (by 80%), respectively.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNSM.2022.3158468</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4018-0275</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1932-4537
ispartof IEEE eTransactions on network and service management, 2022-09, Vol.19 (3), p.2207-2218
issn 1932-4537
1932-4537
language eng
recordid cdi_ieee_primary_9732448
source IEEE Electronic Library (IEL)
subjects Algorithms
Control algorithms
Control systems
Control theory
cyber-attacks and software-defined networks
Cybersecurity
Deep learning
deep reinforcement learning
Denial of service attacks
Intrusion
Intrusion detection
Intrusion response system
Logic gates
Machine learning
Markov processes
Optimization
Performance evaluation
Q-learning
Security
Software-defined networking
Traffic flow
title DeepAir: Deep Reinforcement Learning for Adaptive Intrusion Response in Software-Defined Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T12%3A37%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DeepAir:%20Deep%20Reinforcement%20Learning%20for%20Adaptive%20Intrusion%20Response%20in%20Software-Defined%20Networks&rft.jtitle=IEEE%20eTransactions%20on%20network%20and%20service%20management&rft.au=Phan,%20Trung%20V.&rft.date=2022-09&rft.volume=19&rft.issue=3&rft.spage=2207&rft.epage=2218&rft.pages=2207-2218&rft.issn=1932-4537&rft.eissn=1932-4537&rft.coden=ITNSC4&rft_id=info:doi/10.1109/TNSM.2022.3158468&rft_dat=%3Cproquest_RIE%3E2723899558%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2723899558&rft_id=info:pmid/&rft_ieee_id=9732448&rfr_iscdi=true