PV Module Energy Rating Standard IEC 61853-3 Intercomparison and Best Practice Guidelines for Implementation and Validation
The IEC 61853 standard series aims to provide a standardized measure for photovoltaic (PV) module energy rating, namely the Climate Specific Energy Rating(CSER). For this purpose, it defines procedures for the experimental determination of input data and algorithms for calculating the CSER. However,...
Gespeichert in:
Veröffentlicht in: | IEEE journal of photovoltaics 2022-05, Vol.12 (3), p.844-852 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 852 |
---|---|
container_issue | 3 |
container_start_page | 844 |
container_title | IEEE journal of photovoltaics |
container_volume | 12 |
creator | Ruben Vogt, Malte Riechelmann, Stefan Gracia-Amillo, Ana Maria Driesse, Anton Kokka, Alexander Maham, Kinza Karha, Petri Kenny, Robert Schinke, Carsten Bothe, Karsten Blakesley, James Music, Esma Plag, Fabian Friesen, Gabi Corbellini, Gianluca Riedel-Lyngskar, Nicholas Valckenborg, Roland Schweiger, Markus Herrmann, Werner |
description | The IEC 61853 standard series aims to provide a standardized measure for photovoltaic (PV) module energy rating, namely the Climate Specific Energy Rating(CSER). For this purpose, it defines procedures for the experimental determination of input data and algorithms for calculating the CSER. However, some steps leave room for interpretation regarding the specific implementation. To analyze the impact of these ambiguities, the comparability of results, and the clarity of the algorithm for calculating the CSER in Part 3 of the standard, an intercomparison is performed among research organizations with ten different implementations of the algorithm. We share the same input data, obtained by measurement of a commercial crystalline silicon PV module, among the participating organizations. Each participant then uses their individual implementations of the algorithm to calculate the resulting CSER values. The initial blind comparison reveals differences of 0.133 (14.7%) in CSER. After several comparison phases, a best practice approach is defined, which reduces the difference by a factor of 210 to below 0.001 (0.1%) in CSER for two independent PV modules. The best practice presented in this article establishes clear guidelines for the numerical treatment of the spectral correction and power matrix extrapolation, where the methods in the standard are not clearly defined. Additionally, we provide input data and results for the PV community to test their implementations of the standard's algorithm. To identify the source of the deviations, we introduce a climate data diagnostic set. Based on our experiences, we give recommendations for the future development of the standard. |
doi_str_mv | 10.1109/JPHOTOV.2021.3135258 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9732308</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9732308</ieee_id><sourcerecordid>2652700884</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-95566458eef785b4c1c6c7bb5312d86732897241ac1fb4664394e6c99155a6d83</originalsourceid><addsrcrecordid>eNo9kE1PwkAQhhujiUT5BXrYxHNxv7s9KkGowUAUuTbb7ZSU9Mvd9kD88y6CzmVmkuedefMGwT3BE0Jw_Pi6Xqw2q-2EYkomjDBBhboIRpQIGTKO2eXfzBS5DsbO7bEviYWUfBR8r7forc2HCtCsAbs7oHfdl80OffS6ybXNUTKbIkmUYCFDSdODNW3daVu6tkEeQc_gerS22vSlATQfyhyqsgGHitaipO4qqKHp_dEzv9VVmf-ut8FVoSsH43O_CT5fZpvpIlyu5sn0aRkaxkUfxuJoVSiAIlIi44YYaaIsE4zQXMmIURVHlBNtSJFxj7KYgzRxTITQMlfsJng43e1s-zV4u-m-HWzjX6ZUChphrBT3FD9RxrbOWSjSzpa1toeU4PSYdHpOOj0mnZ6T9rK7k6wEgH9J7F0xrNgPTlR43g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2652700884</pqid></control><display><type>article</type><title>PV Module Energy Rating Standard IEC 61853-3 Intercomparison and Best Practice Guidelines for Implementation and Validation</title><source>IEEE Electronic Library (IEL)</source><creator>Ruben Vogt, Malte ; Riechelmann, Stefan ; Gracia-Amillo, Ana Maria ; Driesse, Anton ; Kokka, Alexander ; Maham, Kinza ; Karha, Petri ; Kenny, Robert ; Schinke, Carsten ; Bothe, Karsten ; Blakesley, James ; Music, Esma ; Plag, Fabian ; Friesen, Gabi ; Corbellini, Gianluca ; Riedel-Lyngskar, Nicholas ; Valckenborg, Roland ; Schweiger, Markus ; Herrmann, Werner</creator><creatorcontrib>Ruben Vogt, Malte ; Riechelmann, Stefan ; Gracia-Amillo, Ana Maria ; Driesse, Anton ; Kokka, Alexander ; Maham, Kinza ; Karha, Petri ; Kenny, Robert ; Schinke, Carsten ; Bothe, Karsten ; Blakesley, James ; Music, Esma ; Plag, Fabian ; Friesen, Gabi ; Corbellini, Gianluca ; Riedel-Lyngskar, Nicholas ; Valckenborg, Roland ; Schweiger, Markus ; Herrmann, Werner</creatorcontrib><description>The IEC 61853 standard series aims to provide a standardized measure for photovoltaic (PV) module energy rating, namely the Climate Specific Energy Rating(CSER). For this purpose, it defines procedures for the experimental determination of input data and algorithms for calculating the CSER. However, some steps leave room for interpretation regarding the specific implementation. To analyze the impact of these ambiguities, the comparability of results, and the clarity of the algorithm for calculating the CSER in Part 3 of the standard, an intercomparison is performed among research organizations with ten different implementations of the algorithm. We share the same input data, obtained by measurement of a commercial crystalline silicon PV module, among the participating organizations. Each participant then uses their individual implementations of the algorithm to calculate the resulting CSER values. The initial blind comparison reveals differences of 0.133 (14.7%) in CSER. After several comparison phases, a best practice approach is defined, which reduces the difference by a factor of 210 to below 0.001 (0.1%) in CSER for two independent PV modules. The best practice presented in this article establishes clear guidelines for the numerical treatment of the spectral correction and power matrix extrapolation, where the methods in the standard are not clearly defined. Additionally, we provide input data and results for the PV community to test their implementations of the standard's algorithm. To identify the source of the deviations, we introduce a climate data diagnostic set. Based on our experiences, we give recommendations for the future development of the standard.</description><identifier>ISSN: 2156-3381</identifier><identifier>EISSN: 2156-3403</identifier><identifier>DOI: 10.1109/JPHOTOV.2021.3135258</identifier><identifier>CODEN: IJPEG8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Best practice ; Energy performance ; Energy rating ; energy yield ; Guidelines ; IEC Standards ; Impact analysis ; Mathematical analysis ; Mathematical models ; Meteorology ; Modules ; Organizations ; photovoltaic (PV) module ; Photovoltaic cells ; Photovoltaic systems ; Power measurement ; Temperature measurement</subject><ispartof>IEEE journal of photovoltaics, 2022-05, Vol.12 (3), p.844-852</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-95566458eef785b4c1c6c7bb5312d86732897241ac1fb4664394e6c99155a6d83</citedby><cites>FETCH-LOGICAL-c345t-95566458eef785b4c1c6c7bb5312d86732897241ac1fb4664394e6c99155a6d83</cites><orcidid>0000-0003-3023-2155 ; 0000-0002-6554-8937 ; 0000-0002-5215-869X ; 0000-0003-3924-2456 ; 0000-0001-5032-7878 ; 0000-0002-0740-8733 ; 0000-0002-5654-4571 ; 0000-0001-6740-1317</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9732308$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9732308$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ruben Vogt, Malte</creatorcontrib><creatorcontrib>Riechelmann, Stefan</creatorcontrib><creatorcontrib>Gracia-Amillo, Ana Maria</creatorcontrib><creatorcontrib>Driesse, Anton</creatorcontrib><creatorcontrib>Kokka, Alexander</creatorcontrib><creatorcontrib>Maham, Kinza</creatorcontrib><creatorcontrib>Karha, Petri</creatorcontrib><creatorcontrib>Kenny, Robert</creatorcontrib><creatorcontrib>Schinke, Carsten</creatorcontrib><creatorcontrib>Bothe, Karsten</creatorcontrib><creatorcontrib>Blakesley, James</creatorcontrib><creatorcontrib>Music, Esma</creatorcontrib><creatorcontrib>Plag, Fabian</creatorcontrib><creatorcontrib>Friesen, Gabi</creatorcontrib><creatorcontrib>Corbellini, Gianluca</creatorcontrib><creatorcontrib>Riedel-Lyngskar, Nicholas</creatorcontrib><creatorcontrib>Valckenborg, Roland</creatorcontrib><creatorcontrib>Schweiger, Markus</creatorcontrib><creatorcontrib>Herrmann, Werner</creatorcontrib><title>PV Module Energy Rating Standard IEC 61853-3 Intercomparison and Best Practice Guidelines for Implementation and Validation</title><title>IEEE journal of photovoltaics</title><addtitle>JPHOTOV</addtitle><description>The IEC 61853 standard series aims to provide a standardized measure for photovoltaic (PV) module energy rating, namely the Climate Specific Energy Rating(CSER). For this purpose, it defines procedures for the experimental determination of input data and algorithms for calculating the CSER. However, some steps leave room for interpretation regarding the specific implementation. To analyze the impact of these ambiguities, the comparability of results, and the clarity of the algorithm for calculating the CSER in Part 3 of the standard, an intercomparison is performed among research organizations with ten different implementations of the algorithm. We share the same input data, obtained by measurement of a commercial crystalline silicon PV module, among the participating organizations. Each participant then uses their individual implementations of the algorithm to calculate the resulting CSER values. The initial blind comparison reveals differences of 0.133 (14.7%) in CSER. After several comparison phases, a best practice approach is defined, which reduces the difference by a factor of 210 to below 0.001 (0.1%) in CSER for two independent PV modules. The best practice presented in this article establishes clear guidelines for the numerical treatment of the spectral correction and power matrix extrapolation, where the methods in the standard are not clearly defined. Additionally, we provide input data and results for the PV community to test their implementations of the standard's algorithm. To identify the source of the deviations, we introduce a climate data diagnostic set. Based on our experiences, we give recommendations for the future development of the standard.</description><subject>Algorithms</subject><subject>Best practice</subject><subject>Energy performance</subject><subject>Energy rating</subject><subject>energy yield</subject><subject>Guidelines</subject><subject>IEC Standards</subject><subject>Impact analysis</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Meteorology</subject><subject>Modules</subject><subject>Organizations</subject><subject>photovoltaic (PV) module</subject><subject>Photovoltaic cells</subject><subject>Photovoltaic systems</subject><subject>Power measurement</subject><subject>Temperature measurement</subject><issn>2156-3381</issn><issn>2156-3403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PwkAQhhujiUT5BXrYxHNxv7s9KkGowUAUuTbb7ZSU9Mvd9kD88y6CzmVmkuedefMGwT3BE0Jw_Pi6Xqw2q-2EYkomjDBBhboIRpQIGTKO2eXfzBS5DsbO7bEviYWUfBR8r7forc2HCtCsAbs7oHfdl80OffS6ybXNUTKbIkmUYCFDSdODNW3daVu6tkEeQc_gerS22vSlATQfyhyqsgGHitaipO4qqKHp_dEzv9VVmf-ut8FVoSsH43O_CT5fZpvpIlyu5sn0aRkaxkUfxuJoVSiAIlIi44YYaaIsE4zQXMmIURVHlBNtSJFxj7KYgzRxTITQMlfsJng43e1s-zV4u-m-HWzjX6ZUChphrBT3FD9RxrbOWSjSzpa1toeU4PSYdHpOOj0mnZ6T9rK7k6wEgH9J7F0xrNgPTlR43g</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Ruben Vogt, Malte</creator><creator>Riechelmann, Stefan</creator><creator>Gracia-Amillo, Ana Maria</creator><creator>Driesse, Anton</creator><creator>Kokka, Alexander</creator><creator>Maham, Kinza</creator><creator>Karha, Petri</creator><creator>Kenny, Robert</creator><creator>Schinke, Carsten</creator><creator>Bothe, Karsten</creator><creator>Blakesley, James</creator><creator>Music, Esma</creator><creator>Plag, Fabian</creator><creator>Friesen, Gabi</creator><creator>Corbellini, Gianluca</creator><creator>Riedel-Lyngskar, Nicholas</creator><creator>Valckenborg, Roland</creator><creator>Schweiger, Markus</creator><creator>Herrmann, Werner</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3023-2155</orcidid><orcidid>https://orcid.org/0000-0002-6554-8937</orcidid><orcidid>https://orcid.org/0000-0002-5215-869X</orcidid><orcidid>https://orcid.org/0000-0003-3924-2456</orcidid><orcidid>https://orcid.org/0000-0001-5032-7878</orcidid><orcidid>https://orcid.org/0000-0002-0740-8733</orcidid><orcidid>https://orcid.org/0000-0002-5654-4571</orcidid><orcidid>https://orcid.org/0000-0001-6740-1317</orcidid></search><sort><creationdate>20220501</creationdate><title>PV Module Energy Rating Standard IEC 61853-3 Intercomparison and Best Practice Guidelines for Implementation and Validation</title><author>Ruben Vogt, Malte ; Riechelmann, Stefan ; Gracia-Amillo, Ana Maria ; Driesse, Anton ; Kokka, Alexander ; Maham, Kinza ; Karha, Petri ; Kenny, Robert ; Schinke, Carsten ; Bothe, Karsten ; Blakesley, James ; Music, Esma ; Plag, Fabian ; Friesen, Gabi ; Corbellini, Gianluca ; Riedel-Lyngskar, Nicholas ; Valckenborg, Roland ; Schweiger, Markus ; Herrmann, Werner</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-95566458eef785b4c1c6c7bb5312d86732897241ac1fb4664394e6c99155a6d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Best practice</topic><topic>Energy performance</topic><topic>Energy rating</topic><topic>energy yield</topic><topic>Guidelines</topic><topic>IEC Standards</topic><topic>Impact analysis</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Meteorology</topic><topic>Modules</topic><topic>Organizations</topic><topic>photovoltaic (PV) module</topic><topic>Photovoltaic cells</topic><topic>Photovoltaic systems</topic><topic>Power measurement</topic><topic>Temperature measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruben Vogt, Malte</creatorcontrib><creatorcontrib>Riechelmann, Stefan</creatorcontrib><creatorcontrib>Gracia-Amillo, Ana Maria</creatorcontrib><creatorcontrib>Driesse, Anton</creatorcontrib><creatorcontrib>Kokka, Alexander</creatorcontrib><creatorcontrib>Maham, Kinza</creatorcontrib><creatorcontrib>Karha, Petri</creatorcontrib><creatorcontrib>Kenny, Robert</creatorcontrib><creatorcontrib>Schinke, Carsten</creatorcontrib><creatorcontrib>Bothe, Karsten</creatorcontrib><creatorcontrib>Blakesley, James</creatorcontrib><creatorcontrib>Music, Esma</creatorcontrib><creatorcontrib>Plag, Fabian</creatorcontrib><creatorcontrib>Friesen, Gabi</creatorcontrib><creatorcontrib>Corbellini, Gianluca</creatorcontrib><creatorcontrib>Riedel-Lyngskar, Nicholas</creatorcontrib><creatorcontrib>Valckenborg, Roland</creatorcontrib><creatorcontrib>Schweiger, Markus</creatorcontrib><creatorcontrib>Herrmann, Werner</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of photovoltaics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ruben Vogt, Malte</au><au>Riechelmann, Stefan</au><au>Gracia-Amillo, Ana Maria</au><au>Driesse, Anton</au><au>Kokka, Alexander</au><au>Maham, Kinza</au><au>Karha, Petri</au><au>Kenny, Robert</au><au>Schinke, Carsten</au><au>Bothe, Karsten</au><au>Blakesley, James</au><au>Music, Esma</au><au>Plag, Fabian</au><au>Friesen, Gabi</au><au>Corbellini, Gianluca</au><au>Riedel-Lyngskar, Nicholas</au><au>Valckenborg, Roland</au><au>Schweiger, Markus</au><au>Herrmann, Werner</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PV Module Energy Rating Standard IEC 61853-3 Intercomparison and Best Practice Guidelines for Implementation and Validation</atitle><jtitle>IEEE journal of photovoltaics</jtitle><stitle>JPHOTOV</stitle><date>2022-05-01</date><risdate>2022</risdate><volume>12</volume><issue>3</issue><spage>844</spage><epage>852</epage><pages>844-852</pages><issn>2156-3381</issn><eissn>2156-3403</eissn><coden>IJPEG8</coden><abstract>The IEC 61853 standard series aims to provide a standardized measure for photovoltaic (PV) module energy rating, namely the Climate Specific Energy Rating(CSER). For this purpose, it defines procedures for the experimental determination of input data and algorithms for calculating the CSER. However, some steps leave room for interpretation regarding the specific implementation. To analyze the impact of these ambiguities, the comparability of results, and the clarity of the algorithm for calculating the CSER in Part 3 of the standard, an intercomparison is performed among research organizations with ten different implementations of the algorithm. We share the same input data, obtained by measurement of a commercial crystalline silicon PV module, among the participating organizations. Each participant then uses their individual implementations of the algorithm to calculate the resulting CSER values. The initial blind comparison reveals differences of 0.133 (14.7%) in CSER. After several comparison phases, a best practice approach is defined, which reduces the difference by a factor of 210 to below 0.001 (0.1%) in CSER for two independent PV modules. The best practice presented in this article establishes clear guidelines for the numerical treatment of the spectral correction and power matrix extrapolation, where the methods in the standard are not clearly defined. Additionally, we provide input data and results for the PV community to test their implementations of the standard's algorithm. To identify the source of the deviations, we introduce a climate data diagnostic set. Based on our experiences, we give recommendations for the future development of the standard.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JPHOTOV.2021.3135258</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3023-2155</orcidid><orcidid>https://orcid.org/0000-0002-6554-8937</orcidid><orcidid>https://orcid.org/0000-0002-5215-869X</orcidid><orcidid>https://orcid.org/0000-0003-3924-2456</orcidid><orcidid>https://orcid.org/0000-0001-5032-7878</orcidid><orcidid>https://orcid.org/0000-0002-0740-8733</orcidid><orcidid>https://orcid.org/0000-0002-5654-4571</orcidid><orcidid>https://orcid.org/0000-0001-6740-1317</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2156-3381 |
ispartof | IEEE journal of photovoltaics, 2022-05, Vol.12 (3), p.844-852 |
issn | 2156-3381 2156-3403 |
language | eng |
recordid | cdi_ieee_primary_9732308 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Best practice Energy performance Energy rating energy yield Guidelines IEC Standards Impact analysis Mathematical analysis Mathematical models Meteorology Modules Organizations photovoltaic (PV) module Photovoltaic cells Photovoltaic systems Power measurement Temperature measurement |
title | PV Module Energy Rating Standard IEC 61853-3 Intercomparison and Best Practice Guidelines for Implementation and Validation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A26%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PV%20Module%20Energy%20Rating%20Standard%20IEC%2061853-3%20Intercomparison%20and%20Best%20Practice%20Guidelines%20for%20Implementation%20and%20Validation&rft.jtitle=IEEE%20journal%20of%20photovoltaics&rft.au=Ruben%20Vogt,%20Malte&rft.date=2022-05-01&rft.volume=12&rft.issue=3&rft.spage=844&rft.epage=852&rft.pages=844-852&rft.issn=2156-3381&rft.eissn=2156-3403&rft.coden=IJPEG8&rft_id=info:doi/10.1109/JPHOTOV.2021.3135258&rft_dat=%3Cproquest_RIE%3E2652700884%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2652700884&rft_id=info:pmid/&rft_ieee_id=9732308&rfr_iscdi=true |