PV Module Energy Rating Standard IEC 61853-3 Intercomparison and Best Practice Guidelines for Implementation and Validation

The IEC 61853 standard series aims to provide a standardized measure for photovoltaic (PV) module energy rating, namely the Climate Specific Energy Rating(CSER). For this purpose, it defines procedures for the experimental determination of input data and algorithms for calculating the CSER. However,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of photovoltaics 2022-05, Vol.12 (3), p.844-852
Hauptverfasser: Ruben Vogt, Malte, Riechelmann, Stefan, Gracia-Amillo, Ana Maria, Driesse, Anton, Kokka, Alexander, Maham, Kinza, Karha, Petri, Kenny, Robert, Schinke, Carsten, Bothe, Karsten, Blakesley, James, Music, Esma, Plag, Fabian, Friesen, Gabi, Corbellini, Gianluca, Riedel-Lyngskar, Nicholas, Valckenborg, Roland, Schweiger, Markus, Herrmann, Werner
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 852
container_issue 3
container_start_page 844
container_title IEEE journal of photovoltaics
container_volume 12
creator Ruben Vogt, Malte
Riechelmann, Stefan
Gracia-Amillo, Ana Maria
Driesse, Anton
Kokka, Alexander
Maham, Kinza
Karha, Petri
Kenny, Robert
Schinke, Carsten
Bothe, Karsten
Blakesley, James
Music, Esma
Plag, Fabian
Friesen, Gabi
Corbellini, Gianluca
Riedel-Lyngskar, Nicholas
Valckenborg, Roland
Schweiger, Markus
Herrmann, Werner
description The IEC 61853 standard series aims to provide a standardized measure for photovoltaic (PV) module energy rating, namely the Climate Specific Energy Rating(CSER). For this purpose, it defines procedures for the experimental determination of input data and algorithms for calculating the CSER. However, some steps leave room for interpretation regarding the specific implementation. To analyze the impact of these ambiguities, the comparability of results, and the clarity of the algorithm for calculating the CSER in Part 3 of the standard, an intercomparison is performed among research organizations with ten different implementations of the algorithm. We share the same input data, obtained by measurement of a commercial crystalline silicon PV module, among the participating organizations. Each participant then uses their individual implementations of the algorithm to calculate the resulting CSER values. The initial blind comparison reveals differences of 0.133 (14.7%) in CSER. After several comparison phases, a best practice approach is defined, which reduces the difference by a factor of 210 to below 0.001 (0.1%) in CSER for two independent PV modules. The best practice presented in this article establishes clear guidelines for the numerical treatment of the spectral correction and power matrix extrapolation, where the methods in the standard are not clearly defined. Additionally, we provide input data and results for the PV community to test their implementations of the standard's algorithm. To identify the source of the deviations, we introduce a climate data diagnostic set. Based on our experiences, we give recommendations for the future development of the standard.
doi_str_mv 10.1109/JPHOTOV.2021.3135258
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9732308</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9732308</ieee_id><sourcerecordid>2652700884</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-95566458eef785b4c1c6c7bb5312d86732897241ac1fb4664394e6c99155a6d83</originalsourceid><addsrcrecordid>eNo9kE1PwkAQhhujiUT5BXrYxHNxv7s9KkGowUAUuTbb7ZSU9Mvd9kD88y6CzmVmkuedefMGwT3BE0Jw_Pi6Xqw2q-2EYkomjDBBhboIRpQIGTKO2eXfzBS5DsbO7bEviYWUfBR8r7forc2HCtCsAbs7oHfdl80OffS6ybXNUTKbIkmUYCFDSdODNW3daVu6tkEeQc_gerS22vSlATQfyhyqsgGHitaipO4qqKHp_dEzv9VVmf-ut8FVoSsH43O_CT5fZpvpIlyu5sn0aRkaxkUfxuJoVSiAIlIi44YYaaIsE4zQXMmIURVHlBNtSJFxj7KYgzRxTITQMlfsJng43e1s-zV4u-m-HWzjX6ZUChphrBT3FD9RxrbOWSjSzpa1toeU4PSYdHpOOj0mnZ6T9rK7k6wEgH9J7F0xrNgPTlR43g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2652700884</pqid></control><display><type>article</type><title>PV Module Energy Rating Standard IEC 61853-3 Intercomparison and Best Practice Guidelines for Implementation and Validation</title><source>IEEE Electronic Library (IEL)</source><creator>Ruben Vogt, Malte ; Riechelmann, Stefan ; Gracia-Amillo, Ana Maria ; Driesse, Anton ; Kokka, Alexander ; Maham, Kinza ; Karha, Petri ; Kenny, Robert ; Schinke, Carsten ; Bothe, Karsten ; Blakesley, James ; Music, Esma ; Plag, Fabian ; Friesen, Gabi ; Corbellini, Gianluca ; Riedel-Lyngskar, Nicholas ; Valckenborg, Roland ; Schweiger, Markus ; Herrmann, Werner</creator><creatorcontrib>Ruben Vogt, Malte ; Riechelmann, Stefan ; Gracia-Amillo, Ana Maria ; Driesse, Anton ; Kokka, Alexander ; Maham, Kinza ; Karha, Petri ; Kenny, Robert ; Schinke, Carsten ; Bothe, Karsten ; Blakesley, James ; Music, Esma ; Plag, Fabian ; Friesen, Gabi ; Corbellini, Gianluca ; Riedel-Lyngskar, Nicholas ; Valckenborg, Roland ; Schweiger, Markus ; Herrmann, Werner</creatorcontrib><description>The IEC 61853 standard series aims to provide a standardized measure for photovoltaic (PV) module energy rating, namely the Climate Specific Energy Rating(CSER). For this purpose, it defines procedures for the experimental determination of input data and algorithms for calculating the CSER. However, some steps leave room for interpretation regarding the specific implementation. To analyze the impact of these ambiguities, the comparability of results, and the clarity of the algorithm for calculating the CSER in Part 3 of the standard, an intercomparison is performed among research organizations with ten different implementations of the algorithm. We share the same input data, obtained by measurement of a commercial crystalline silicon PV module, among the participating organizations. Each participant then uses their individual implementations of the algorithm to calculate the resulting CSER values. The initial blind comparison reveals differences of 0.133 (14.7%) in CSER. After several comparison phases, a best practice approach is defined, which reduces the difference by a factor of 210 to below 0.001 (0.1%) in CSER for two independent PV modules. The best practice presented in this article establishes clear guidelines for the numerical treatment of the spectral correction and power matrix extrapolation, where the methods in the standard are not clearly defined. Additionally, we provide input data and results for the PV community to test their implementations of the standard's algorithm. To identify the source of the deviations, we introduce a climate data diagnostic set. Based on our experiences, we give recommendations for the future development of the standard.</description><identifier>ISSN: 2156-3381</identifier><identifier>EISSN: 2156-3403</identifier><identifier>DOI: 10.1109/JPHOTOV.2021.3135258</identifier><identifier>CODEN: IJPEG8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Best practice ; Energy performance ; Energy rating ; energy yield ; Guidelines ; IEC Standards ; Impact analysis ; Mathematical analysis ; Mathematical models ; Meteorology ; Modules ; Organizations ; photovoltaic (PV) module ; Photovoltaic cells ; Photovoltaic systems ; Power measurement ; Temperature measurement</subject><ispartof>IEEE journal of photovoltaics, 2022-05, Vol.12 (3), p.844-852</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-95566458eef785b4c1c6c7bb5312d86732897241ac1fb4664394e6c99155a6d83</citedby><cites>FETCH-LOGICAL-c345t-95566458eef785b4c1c6c7bb5312d86732897241ac1fb4664394e6c99155a6d83</cites><orcidid>0000-0003-3023-2155 ; 0000-0002-6554-8937 ; 0000-0002-5215-869X ; 0000-0003-3924-2456 ; 0000-0001-5032-7878 ; 0000-0002-0740-8733 ; 0000-0002-5654-4571 ; 0000-0001-6740-1317</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9732308$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9732308$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ruben Vogt, Malte</creatorcontrib><creatorcontrib>Riechelmann, Stefan</creatorcontrib><creatorcontrib>Gracia-Amillo, Ana Maria</creatorcontrib><creatorcontrib>Driesse, Anton</creatorcontrib><creatorcontrib>Kokka, Alexander</creatorcontrib><creatorcontrib>Maham, Kinza</creatorcontrib><creatorcontrib>Karha, Petri</creatorcontrib><creatorcontrib>Kenny, Robert</creatorcontrib><creatorcontrib>Schinke, Carsten</creatorcontrib><creatorcontrib>Bothe, Karsten</creatorcontrib><creatorcontrib>Blakesley, James</creatorcontrib><creatorcontrib>Music, Esma</creatorcontrib><creatorcontrib>Plag, Fabian</creatorcontrib><creatorcontrib>Friesen, Gabi</creatorcontrib><creatorcontrib>Corbellini, Gianluca</creatorcontrib><creatorcontrib>Riedel-Lyngskar, Nicholas</creatorcontrib><creatorcontrib>Valckenborg, Roland</creatorcontrib><creatorcontrib>Schweiger, Markus</creatorcontrib><creatorcontrib>Herrmann, Werner</creatorcontrib><title>PV Module Energy Rating Standard IEC 61853-3 Intercomparison and Best Practice Guidelines for Implementation and Validation</title><title>IEEE journal of photovoltaics</title><addtitle>JPHOTOV</addtitle><description>The IEC 61853 standard series aims to provide a standardized measure for photovoltaic (PV) module energy rating, namely the Climate Specific Energy Rating(CSER). For this purpose, it defines procedures for the experimental determination of input data and algorithms for calculating the CSER. However, some steps leave room for interpretation regarding the specific implementation. To analyze the impact of these ambiguities, the comparability of results, and the clarity of the algorithm for calculating the CSER in Part 3 of the standard, an intercomparison is performed among research organizations with ten different implementations of the algorithm. We share the same input data, obtained by measurement of a commercial crystalline silicon PV module, among the participating organizations. Each participant then uses their individual implementations of the algorithm to calculate the resulting CSER values. The initial blind comparison reveals differences of 0.133 (14.7%) in CSER. After several comparison phases, a best practice approach is defined, which reduces the difference by a factor of 210 to below 0.001 (0.1%) in CSER for two independent PV modules. The best practice presented in this article establishes clear guidelines for the numerical treatment of the spectral correction and power matrix extrapolation, where the methods in the standard are not clearly defined. Additionally, we provide input data and results for the PV community to test their implementations of the standard's algorithm. To identify the source of the deviations, we introduce a climate data diagnostic set. Based on our experiences, we give recommendations for the future development of the standard.</description><subject>Algorithms</subject><subject>Best practice</subject><subject>Energy performance</subject><subject>Energy rating</subject><subject>energy yield</subject><subject>Guidelines</subject><subject>IEC Standards</subject><subject>Impact analysis</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Meteorology</subject><subject>Modules</subject><subject>Organizations</subject><subject>photovoltaic (PV) module</subject><subject>Photovoltaic cells</subject><subject>Photovoltaic systems</subject><subject>Power measurement</subject><subject>Temperature measurement</subject><issn>2156-3381</issn><issn>2156-3403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PwkAQhhujiUT5BXrYxHNxv7s9KkGowUAUuTbb7ZSU9Mvd9kD88y6CzmVmkuedefMGwT3BE0Jw_Pi6Xqw2q-2EYkomjDBBhboIRpQIGTKO2eXfzBS5DsbO7bEviYWUfBR8r7forc2HCtCsAbs7oHfdl80OffS6ybXNUTKbIkmUYCFDSdODNW3daVu6tkEeQc_gerS22vSlATQfyhyqsgGHitaipO4qqKHp_dEzv9VVmf-ut8FVoSsH43O_CT5fZpvpIlyu5sn0aRkaxkUfxuJoVSiAIlIi44YYaaIsE4zQXMmIURVHlBNtSJFxj7KYgzRxTITQMlfsJng43e1s-zV4u-m-HWzjX6ZUChphrBT3FD9RxrbOWSjSzpa1toeU4PSYdHpOOj0mnZ6T9rK7k6wEgH9J7F0xrNgPTlR43g</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Ruben Vogt, Malte</creator><creator>Riechelmann, Stefan</creator><creator>Gracia-Amillo, Ana Maria</creator><creator>Driesse, Anton</creator><creator>Kokka, Alexander</creator><creator>Maham, Kinza</creator><creator>Karha, Petri</creator><creator>Kenny, Robert</creator><creator>Schinke, Carsten</creator><creator>Bothe, Karsten</creator><creator>Blakesley, James</creator><creator>Music, Esma</creator><creator>Plag, Fabian</creator><creator>Friesen, Gabi</creator><creator>Corbellini, Gianluca</creator><creator>Riedel-Lyngskar, Nicholas</creator><creator>Valckenborg, Roland</creator><creator>Schweiger, Markus</creator><creator>Herrmann, Werner</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3023-2155</orcidid><orcidid>https://orcid.org/0000-0002-6554-8937</orcidid><orcidid>https://orcid.org/0000-0002-5215-869X</orcidid><orcidid>https://orcid.org/0000-0003-3924-2456</orcidid><orcidid>https://orcid.org/0000-0001-5032-7878</orcidid><orcidid>https://orcid.org/0000-0002-0740-8733</orcidid><orcidid>https://orcid.org/0000-0002-5654-4571</orcidid><orcidid>https://orcid.org/0000-0001-6740-1317</orcidid></search><sort><creationdate>20220501</creationdate><title>PV Module Energy Rating Standard IEC 61853-3 Intercomparison and Best Practice Guidelines for Implementation and Validation</title><author>Ruben Vogt, Malte ; Riechelmann, Stefan ; Gracia-Amillo, Ana Maria ; Driesse, Anton ; Kokka, Alexander ; Maham, Kinza ; Karha, Petri ; Kenny, Robert ; Schinke, Carsten ; Bothe, Karsten ; Blakesley, James ; Music, Esma ; Plag, Fabian ; Friesen, Gabi ; Corbellini, Gianluca ; Riedel-Lyngskar, Nicholas ; Valckenborg, Roland ; Schweiger, Markus ; Herrmann, Werner</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-95566458eef785b4c1c6c7bb5312d86732897241ac1fb4664394e6c99155a6d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Best practice</topic><topic>Energy performance</topic><topic>Energy rating</topic><topic>energy yield</topic><topic>Guidelines</topic><topic>IEC Standards</topic><topic>Impact analysis</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Meteorology</topic><topic>Modules</topic><topic>Organizations</topic><topic>photovoltaic (PV) module</topic><topic>Photovoltaic cells</topic><topic>Photovoltaic systems</topic><topic>Power measurement</topic><topic>Temperature measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruben Vogt, Malte</creatorcontrib><creatorcontrib>Riechelmann, Stefan</creatorcontrib><creatorcontrib>Gracia-Amillo, Ana Maria</creatorcontrib><creatorcontrib>Driesse, Anton</creatorcontrib><creatorcontrib>Kokka, Alexander</creatorcontrib><creatorcontrib>Maham, Kinza</creatorcontrib><creatorcontrib>Karha, Petri</creatorcontrib><creatorcontrib>Kenny, Robert</creatorcontrib><creatorcontrib>Schinke, Carsten</creatorcontrib><creatorcontrib>Bothe, Karsten</creatorcontrib><creatorcontrib>Blakesley, James</creatorcontrib><creatorcontrib>Music, Esma</creatorcontrib><creatorcontrib>Plag, Fabian</creatorcontrib><creatorcontrib>Friesen, Gabi</creatorcontrib><creatorcontrib>Corbellini, Gianluca</creatorcontrib><creatorcontrib>Riedel-Lyngskar, Nicholas</creatorcontrib><creatorcontrib>Valckenborg, Roland</creatorcontrib><creatorcontrib>Schweiger, Markus</creatorcontrib><creatorcontrib>Herrmann, Werner</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of photovoltaics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ruben Vogt, Malte</au><au>Riechelmann, Stefan</au><au>Gracia-Amillo, Ana Maria</au><au>Driesse, Anton</au><au>Kokka, Alexander</au><au>Maham, Kinza</au><au>Karha, Petri</au><au>Kenny, Robert</au><au>Schinke, Carsten</au><au>Bothe, Karsten</au><au>Blakesley, James</au><au>Music, Esma</au><au>Plag, Fabian</au><au>Friesen, Gabi</au><au>Corbellini, Gianluca</au><au>Riedel-Lyngskar, Nicholas</au><au>Valckenborg, Roland</au><au>Schweiger, Markus</au><au>Herrmann, Werner</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PV Module Energy Rating Standard IEC 61853-3 Intercomparison and Best Practice Guidelines for Implementation and Validation</atitle><jtitle>IEEE journal of photovoltaics</jtitle><stitle>JPHOTOV</stitle><date>2022-05-01</date><risdate>2022</risdate><volume>12</volume><issue>3</issue><spage>844</spage><epage>852</epage><pages>844-852</pages><issn>2156-3381</issn><eissn>2156-3403</eissn><coden>IJPEG8</coden><abstract>The IEC 61853 standard series aims to provide a standardized measure for photovoltaic (PV) module energy rating, namely the Climate Specific Energy Rating(CSER). For this purpose, it defines procedures for the experimental determination of input data and algorithms for calculating the CSER. However, some steps leave room for interpretation regarding the specific implementation. To analyze the impact of these ambiguities, the comparability of results, and the clarity of the algorithm for calculating the CSER in Part 3 of the standard, an intercomparison is performed among research organizations with ten different implementations of the algorithm. We share the same input data, obtained by measurement of a commercial crystalline silicon PV module, among the participating organizations. Each participant then uses their individual implementations of the algorithm to calculate the resulting CSER values. The initial blind comparison reveals differences of 0.133 (14.7%) in CSER. After several comparison phases, a best practice approach is defined, which reduces the difference by a factor of 210 to below 0.001 (0.1%) in CSER for two independent PV modules. The best practice presented in this article establishes clear guidelines for the numerical treatment of the spectral correction and power matrix extrapolation, where the methods in the standard are not clearly defined. Additionally, we provide input data and results for the PV community to test their implementations of the standard's algorithm. To identify the source of the deviations, we introduce a climate data diagnostic set. Based on our experiences, we give recommendations for the future development of the standard.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JPHOTOV.2021.3135258</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3023-2155</orcidid><orcidid>https://orcid.org/0000-0002-6554-8937</orcidid><orcidid>https://orcid.org/0000-0002-5215-869X</orcidid><orcidid>https://orcid.org/0000-0003-3924-2456</orcidid><orcidid>https://orcid.org/0000-0001-5032-7878</orcidid><orcidid>https://orcid.org/0000-0002-0740-8733</orcidid><orcidid>https://orcid.org/0000-0002-5654-4571</orcidid><orcidid>https://orcid.org/0000-0001-6740-1317</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2156-3381
ispartof IEEE journal of photovoltaics, 2022-05, Vol.12 (3), p.844-852
issn 2156-3381
2156-3403
language eng
recordid cdi_ieee_primary_9732308
source IEEE Electronic Library (IEL)
subjects Algorithms
Best practice
Energy performance
Energy rating
energy yield
Guidelines
IEC Standards
Impact analysis
Mathematical analysis
Mathematical models
Meteorology
Modules
Organizations
photovoltaic (PV) module
Photovoltaic cells
Photovoltaic systems
Power measurement
Temperature measurement
title PV Module Energy Rating Standard IEC 61853-3 Intercomparison and Best Practice Guidelines for Implementation and Validation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A26%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PV%20Module%20Energy%20Rating%20Standard%20IEC%2061853-3%20Intercomparison%20and%20Best%20Practice%20Guidelines%20for%20Implementation%20and%20Validation&rft.jtitle=IEEE%20journal%20of%20photovoltaics&rft.au=Ruben%20Vogt,%20Malte&rft.date=2022-05-01&rft.volume=12&rft.issue=3&rft.spage=844&rft.epage=852&rft.pages=844-852&rft.issn=2156-3381&rft.eissn=2156-3403&rft.coden=IJPEG8&rft_id=info:doi/10.1109/JPHOTOV.2021.3135258&rft_dat=%3Cproquest_RIE%3E2652700884%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2652700884&rft_id=info:pmid/&rft_ieee_id=9732308&rfr_iscdi=true