Inference of Aggregate Hidden Markov Models With Continuous Observations

We consider a class of inference problems for large populations where each individual is modeled by the same hidden Markov model (HMM). We focus on aggregate inference problems in HMMs with discrete state space and continuous observation space. The continuous observations are aggregated in a way suc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE control systems letters 2022, Vol.6, p.2377-2382
Hauptverfasser: Zhang, Qinsheng, Singh, Rahul, Chen, Yongxin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2382
container_issue
container_start_page 2377
container_title IEEE control systems letters
container_volume 6
creator Zhang, Qinsheng
Singh, Rahul
Chen, Yongxin
description We consider a class of inference problems for large populations where each individual is modeled by the same hidden Markov model (HMM). We focus on aggregate inference problems in HMMs with discrete state space and continuous observation space. The continuous observations are aggregated in a way such that the individuals are indistinguishable from measurements. We propose an aggregate inference algorithm called continuous observation collective forward-backward algorithm. It extends the recently proposed collective forward-backward algorithm for aggregate inference in HMMs with discrete observations to the case of continuous observations.
doi_str_mv 10.1109/LCSYS.2022.3158197
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_9731510</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9731510</ieee_id><sourcerecordid>10_1109_LCSYS_2022_3158197</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-b60b8a40d7b389393e5f718c9b0ac4a32dac7bcee4943138016b5cdd296f9a593</originalsourceid><addsrcrecordid>eNpNkM1Kw0AUhQdRsNS-gG7mBVLnzmSSzLIENYWWLqqIqzA_NzFaMzKTFnz7traIq3Pg8J3FR8gtsCkAU_eLcv22nnLG-VSALEDlF2TE01wmkMrs8l-_JpMYPxhjUPCccTUi1bxvMGBvkfqGzto2YKsHpFXnHPZ0qcOn39Gld7iJ9LUb3mnp-6Hrt34b6cpEDDs9dL6PN-Sq0ZuIk3OOycvjw3NZJYvV07ycLRIrAIbEZMwUOmUuN6JQQgmUTQ6FVYZpm2rBnba5sYipSgWIgkFmpHWOq6xRWioxJvz0a4OPMWBTf4fuS4efGlh91FH_6qiPOuqzjgN0d4I6RPwDDgNIYGIPRQBcOw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Inference of Aggregate Hidden Markov Models With Continuous Observations</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Qinsheng ; Singh, Rahul ; Chen, Yongxin</creator><creatorcontrib>Zhang, Qinsheng ; Singh, Rahul ; Chen, Yongxin</creatorcontrib><description>We consider a class of inference problems for large populations where each individual is modeled by the same hidden Markov model (HMM). We focus on aggregate inference problems in HMMs with discrete state space and continuous observation space. The continuous observations are aggregated in a way such that the individuals are indistinguishable from measurements. We propose an aggregate inference algorithm called continuous observation collective forward-backward algorithm. It extends the recently proposed collective forward-backward algorithm for aggregate inference in HMMs with discrete observations to the case of continuous observations.</description><identifier>ISSN: 2475-1456</identifier><identifier>EISSN: 2475-1456</identifier><identifier>DOI: 10.1109/LCSYS.2022.3158197</identifier><identifier>CODEN: ICSLBO</identifier><language>eng</language><publisher>IEEE</publisher><subject>Aggregates ; filtering ; Hidden Markov models ; Inference algorithms ; Markov process ; Markov processes ; Noise measurement ; Sociology ; Statistics ; stochastic systems</subject><ispartof>IEEE control systems letters, 2022, Vol.6, p.2377-2382</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c311t-b60b8a40d7b389393e5f718c9b0ac4a32dac7bcee4943138016b5cdd296f9a593</citedby><cites>FETCH-LOGICAL-c311t-b60b8a40d7b389393e5f718c9b0ac4a32dac7bcee4943138016b5cdd296f9a593</cites><orcidid>0000-0002-1459-6365</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9731510$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,4012,27910,27911,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9731510$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Qinsheng</creatorcontrib><creatorcontrib>Singh, Rahul</creatorcontrib><creatorcontrib>Chen, Yongxin</creatorcontrib><title>Inference of Aggregate Hidden Markov Models With Continuous Observations</title><title>IEEE control systems letters</title><addtitle>LCSYS</addtitle><description>We consider a class of inference problems for large populations where each individual is modeled by the same hidden Markov model (HMM). We focus on aggregate inference problems in HMMs with discrete state space and continuous observation space. The continuous observations are aggregated in a way such that the individuals are indistinguishable from measurements. We propose an aggregate inference algorithm called continuous observation collective forward-backward algorithm. It extends the recently proposed collective forward-backward algorithm for aggregate inference in HMMs with discrete observations to the case of continuous observations.</description><subject>Aggregates</subject><subject>filtering</subject><subject>Hidden Markov models</subject><subject>Inference algorithms</subject><subject>Markov process</subject><subject>Markov processes</subject><subject>Noise measurement</subject><subject>Sociology</subject><subject>Statistics</subject><subject>stochastic systems</subject><issn>2475-1456</issn><issn>2475-1456</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1Kw0AUhQdRsNS-gG7mBVLnzmSSzLIENYWWLqqIqzA_NzFaMzKTFnz7traIq3Pg8J3FR8gtsCkAU_eLcv22nnLG-VSALEDlF2TE01wmkMrs8l-_JpMYPxhjUPCccTUi1bxvMGBvkfqGzto2YKsHpFXnHPZ0qcOn39Gld7iJ9LUb3mnp-6Hrt34b6cpEDDs9dL6PN-Sq0ZuIk3OOycvjw3NZJYvV07ycLRIrAIbEZMwUOmUuN6JQQgmUTQ6FVYZpm2rBnba5sYipSgWIgkFmpHWOq6xRWioxJvz0a4OPMWBTf4fuS4efGlh91FH_6qiPOuqzjgN0d4I6RPwDDgNIYGIPRQBcOw</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Zhang, Qinsheng</creator><creator>Singh, Rahul</creator><creator>Chen, Yongxin</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1459-6365</orcidid></search><sort><creationdate>2022</creationdate><title>Inference of Aggregate Hidden Markov Models With Continuous Observations</title><author>Zhang, Qinsheng ; Singh, Rahul ; Chen, Yongxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-b60b8a40d7b389393e5f718c9b0ac4a32dac7bcee4943138016b5cdd296f9a593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aggregates</topic><topic>filtering</topic><topic>Hidden Markov models</topic><topic>Inference algorithms</topic><topic>Markov process</topic><topic>Markov processes</topic><topic>Noise measurement</topic><topic>Sociology</topic><topic>Statistics</topic><topic>stochastic systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Qinsheng</creatorcontrib><creatorcontrib>Singh, Rahul</creatorcontrib><creatorcontrib>Chen, Yongxin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE control systems letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Qinsheng</au><au>Singh, Rahul</au><au>Chen, Yongxin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inference of Aggregate Hidden Markov Models With Continuous Observations</atitle><jtitle>IEEE control systems letters</jtitle><stitle>LCSYS</stitle><date>2022</date><risdate>2022</risdate><volume>6</volume><spage>2377</spage><epage>2382</epage><pages>2377-2382</pages><issn>2475-1456</issn><eissn>2475-1456</eissn><coden>ICSLBO</coden><abstract>We consider a class of inference problems for large populations where each individual is modeled by the same hidden Markov model (HMM). We focus on aggregate inference problems in HMMs with discrete state space and continuous observation space. The continuous observations are aggregated in a way such that the individuals are indistinguishable from measurements. We propose an aggregate inference algorithm called continuous observation collective forward-backward algorithm. It extends the recently proposed collective forward-backward algorithm for aggregate inference in HMMs with discrete observations to the case of continuous observations.</abstract><pub>IEEE</pub><doi>10.1109/LCSYS.2022.3158197</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-1459-6365</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2475-1456
ispartof IEEE control systems letters, 2022, Vol.6, p.2377-2382
issn 2475-1456
2475-1456
language eng
recordid cdi_ieee_primary_9731510
source IEEE Electronic Library (IEL)
subjects Aggregates
filtering
Hidden Markov models
Inference algorithms
Markov process
Markov processes
Noise measurement
Sociology
Statistics
stochastic systems
title Inference of Aggregate Hidden Markov Models With Continuous Observations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T10%3A24%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inference%20of%20Aggregate%20Hidden%20Markov%20Models%20With%20Continuous%20Observations&rft.jtitle=IEEE%20control%20systems%20letters&rft.au=Zhang,%20Qinsheng&rft.date=2022&rft.volume=6&rft.spage=2377&rft.epage=2382&rft.pages=2377-2382&rft.issn=2475-1456&rft.eissn=2475-1456&rft.coden=ICSLBO&rft_id=info:doi/10.1109/LCSYS.2022.3158197&rft_dat=%3Ccrossref_RIE%3E10_1109_LCSYS_2022_3158197%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9731510&rfr_iscdi=true