Multi-Objective Optimization of 400 kV Composite Insulator Corona Ring Design
The electric field distribution is one of the main factors governing the long-term reliability of high voltage composite insulators. However, under severe pollution conditions, electric field stresses, when exceeding thresholds and applying for long periods, could lead to degradation and deteriorati...
Gespeichert in:
Veröffentlicht in: | IEEE access 2022, Vol.10, p.27579-27590 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 27590 |
---|---|
container_issue | |
container_start_page | 27579 |
container_title | IEEE access |
container_volume | 10 |
creator | M'Hamdi, Benalia Benmahamed, Youcef Teguar, Madjid Taha, Ibrahim B. M. Ghoneim, Sherif S. M. |
description | The electric field distribution is one of the main factors governing the long-term reliability of high voltage composite insulators. However, under severe pollution conditions, electric field stresses, when exceeding thresholds and applying for long periods, could lead to degradation and deterioration of the housing materials and, therefore, to failures of the composite insulators. This paper is intended to improve the distributions of the electric field and potential by minimizing the corona ring on a 400 kV AC transmission line composite insulator. The performances of three powerful multi-objective meta-heuristic algorithms, namely Ant Lion Optimizer (MOALO), Particle Swarm Optimizer (MOPSO), and non-dominated sorting genetic algorithm (NSGA-II) are established to achieve this goal. First, variations of electrical fields on the critical parts of the string are obtained using three-dimensional finite element method (FEM) software. Then, three objective functions are developed to establish the relationships between the electric field and the guard ring parameters. Finally, the optimization parameters consist of diameter, tube diameter, and installation height of the corona ring. The obtained results confirm the effectiveness of the three algorithms; the MOLAO is the better in terms of computing time and solution quality. |
doi_str_mv | 10.1109/ACCESS.2022.3157384 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9729761</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9729761</ieee_id><doaj_id>oai_doaj_org_article_7646f516deba48d8bf773aee586c1219</doaj_id><sourcerecordid>2639936739</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-a92b5a0c5175c8adb655a0f6439f4101fccee15a3c842af5b534567e208329eb3</originalsourceid><addsrcrecordid>eNpNUctKA0EQXERBUb_Ay4LnjfN-HGV9BZSAr-swO-kJE5OdODMR9OvduCL2pbuLquqGqqozjCYYI31x2bbXT08TggiZUMwlVWyvOiJY6IZyKvb_zYfVac5LNJQaIC6PqoeH7aqEZtYtwZXwAfVsU8I6fNkSYl9HXzOE6rfXuo3rTcyhQD3t83ZlS0wDlmJv68fQL-oryGHRn1QH3q4ynP724-rl5vq5vWvuZ7fT9vK-cQyp0lhNOm6R41hyp-y8E3xYvWBUe4YR9s4BYG6pU4xYzztOGRcSCFKUaOjocTUdfefRLs0mhbVNnybaYH6AmBbGphLcCowUTHiOxRw6y9RcdV5KagG4Eg4TrAev89Frk-L7FnIxy7hN_fC-IYJqTYWkOxYdWS7FnBP4v6sYmV0MZozB7GIwvzEMqrNRFQDgT6El0VJg-g13GIH3</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2639936739</pqid></control><display><type>article</type><title>Multi-Objective Optimization of 400 kV Composite Insulator Corona Ring Design</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>M'Hamdi, Benalia ; Benmahamed, Youcef ; Teguar, Madjid ; Taha, Ibrahim B. M. ; Ghoneim, Sherif S. M.</creator><creatorcontrib>M'Hamdi, Benalia ; Benmahamed, Youcef ; Teguar, Madjid ; Taha, Ibrahim B. M. ; Ghoneim, Sherif S. M.</creatorcontrib><description>The electric field distribution is one of the main factors governing the long-term reliability of high voltage composite insulators. However, under severe pollution conditions, electric field stresses, when exceeding thresholds and applying for long periods, could lead to degradation and deterioration of the housing materials and, therefore, to failures of the composite insulators. This paper is intended to improve the distributions of the electric field and potential by minimizing the corona ring on a 400 kV AC transmission line composite insulator. The performances of three powerful multi-objective meta-heuristic algorithms, namely Ant Lion Optimizer (MOALO), Particle Swarm Optimizer (MOPSO), and non-dominated sorting genetic algorithm (NSGA-II) are established to achieve this goal. First, variations of electrical fields on the critical parts of the string are obtained using three-dimensional finite element method (FEM) software. Then, three objective functions are developed to establish the relationships between the electric field and the guard ring parameters. Finally, the optimization parameters consist of diameter, tube diameter, and installation height of the corona ring. The obtained results confirm the effectiveness of the three algorithms; the MOLAO is the better in terms of computing time and solution quality.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3157384</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Composite insulator ; Computing time ; Corona ; corona ring ; Diameters ; electric field distribution ; Electric fields ; Electron tubes ; Finite element analysis ; Finite element method ; finite element method (FEM) ; Genetic algorithms ; Heuristic methods ; Insulators ; MOALO ; MOPSO ; multi-objective ; Multiple objective analysis ; NSGA-II ; Optimization ; Parameters ; Reliability aspects ; Sorting algorithms ; Transmission lines</subject><ispartof>IEEE access, 2022, Vol.10, p.27579-27590</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-a92b5a0c5175c8adb655a0f6439f4101fccee15a3c842af5b534567e208329eb3</citedby><cites>FETCH-LOGICAL-c408t-a92b5a0c5175c8adb655a0f6439f4101fccee15a3c842af5b534567e208329eb3</cites><orcidid>0000-0001-7179-3448 ; 0000-0001-6902-5802 ; 0000-0002-9387-1950 ; 0000-0003-2217-6923</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9729761$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>M'Hamdi, Benalia</creatorcontrib><creatorcontrib>Benmahamed, Youcef</creatorcontrib><creatorcontrib>Teguar, Madjid</creatorcontrib><creatorcontrib>Taha, Ibrahim B. M.</creatorcontrib><creatorcontrib>Ghoneim, Sherif S. M.</creatorcontrib><title>Multi-Objective Optimization of 400 kV Composite Insulator Corona Ring Design</title><title>IEEE access</title><addtitle>Access</addtitle><description>The electric field distribution is one of the main factors governing the long-term reliability of high voltage composite insulators. However, under severe pollution conditions, electric field stresses, when exceeding thresholds and applying for long periods, could lead to degradation and deterioration of the housing materials and, therefore, to failures of the composite insulators. This paper is intended to improve the distributions of the electric field and potential by minimizing the corona ring on a 400 kV AC transmission line composite insulator. The performances of three powerful multi-objective meta-heuristic algorithms, namely Ant Lion Optimizer (MOALO), Particle Swarm Optimizer (MOPSO), and non-dominated sorting genetic algorithm (NSGA-II) are established to achieve this goal. First, variations of electrical fields on the critical parts of the string are obtained using three-dimensional finite element method (FEM) software. Then, three objective functions are developed to establish the relationships between the electric field and the guard ring parameters. Finally, the optimization parameters consist of diameter, tube diameter, and installation height of the corona ring. The obtained results confirm the effectiveness of the three algorithms; the MOLAO is the better in terms of computing time and solution quality.</description><subject>Algorithms</subject><subject>Composite insulator</subject><subject>Computing time</subject><subject>Corona</subject><subject>corona ring</subject><subject>Diameters</subject><subject>electric field distribution</subject><subject>Electric fields</subject><subject>Electron tubes</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>finite element method (FEM)</subject><subject>Genetic algorithms</subject><subject>Heuristic methods</subject><subject>Insulators</subject><subject>MOALO</subject><subject>MOPSO</subject><subject>multi-objective</subject><subject>Multiple objective analysis</subject><subject>NSGA-II</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Reliability aspects</subject><subject>Sorting algorithms</subject><subject>Transmission lines</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctKA0EQXERBUb_Ay4LnjfN-HGV9BZSAr-swO-kJE5OdODMR9OvduCL2pbuLquqGqqozjCYYI31x2bbXT08TggiZUMwlVWyvOiJY6IZyKvb_zYfVac5LNJQaIC6PqoeH7aqEZtYtwZXwAfVsU8I6fNkSYl9HXzOE6rfXuo3rTcyhQD3t83ZlS0wDlmJv68fQL-oryGHRn1QH3q4ynP724-rl5vq5vWvuZ7fT9vK-cQyp0lhNOm6R41hyp-y8E3xYvWBUe4YR9s4BYG6pU4xYzztOGRcSCFKUaOjocTUdfefRLs0mhbVNnybaYH6AmBbGphLcCowUTHiOxRw6y9RcdV5KagG4Eg4TrAev89Frk-L7FnIxy7hN_fC-IYJqTYWkOxYdWS7FnBP4v6sYmV0MZozB7GIwvzEMqrNRFQDgT6El0VJg-g13GIH3</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>M'Hamdi, Benalia</creator><creator>Benmahamed, Youcef</creator><creator>Teguar, Madjid</creator><creator>Taha, Ibrahim B. M.</creator><creator>Ghoneim, Sherif S. M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7179-3448</orcidid><orcidid>https://orcid.org/0000-0001-6902-5802</orcidid><orcidid>https://orcid.org/0000-0002-9387-1950</orcidid><orcidid>https://orcid.org/0000-0003-2217-6923</orcidid></search><sort><creationdate>2022</creationdate><title>Multi-Objective Optimization of 400 kV Composite Insulator Corona Ring Design</title><author>M'Hamdi, Benalia ; Benmahamed, Youcef ; Teguar, Madjid ; Taha, Ibrahim B. M. ; Ghoneim, Sherif S. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-a92b5a0c5175c8adb655a0f6439f4101fccee15a3c842af5b534567e208329eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Composite insulator</topic><topic>Computing time</topic><topic>Corona</topic><topic>corona ring</topic><topic>Diameters</topic><topic>electric field distribution</topic><topic>Electric fields</topic><topic>Electron tubes</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>finite element method (FEM)</topic><topic>Genetic algorithms</topic><topic>Heuristic methods</topic><topic>Insulators</topic><topic>MOALO</topic><topic>MOPSO</topic><topic>multi-objective</topic><topic>Multiple objective analysis</topic><topic>NSGA-II</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Reliability aspects</topic><topic>Sorting algorithms</topic><topic>Transmission lines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>M'Hamdi, Benalia</creatorcontrib><creatorcontrib>Benmahamed, Youcef</creatorcontrib><creatorcontrib>Teguar, Madjid</creatorcontrib><creatorcontrib>Taha, Ibrahim B. M.</creatorcontrib><creatorcontrib>Ghoneim, Sherif S. M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>M'Hamdi, Benalia</au><au>Benmahamed, Youcef</au><au>Teguar, Madjid</au><au>Taha, Ibrahim B. M.</au><au>Ghoneim, Sherif S. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Objective Optimization of 400 kV Composite Insulator Corona Ring Design</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>27579</spage><epage>27590</epage><pages>27579-27590</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The electric field distribution is one of the main factors governing the long-term reliability of high voltage composite insulators. However, under severe pollution conditions, electric field stresses, when exceeding thresholds and applying for long periods, could lead to degradation and deterioration of the housing materials and, therefore, to failures of the composite insulators. This paper is intended to improve the distributions of the electric field and potential by minimizing the corona ring on a 400 kV AC transmission line composite insulator. The performances of three powerful multi-objective meta-heuristic algorithms, namely Ant Lion Optimizer (MOALO), Particle Swarm Optimizer (MOPSO), and non-dominated sorting genetic algorithm (NSGA-II) are established to achieve this goal. First, variations of electrical fields on the critical parts of the string are obtained using three-dimensional finite element method (FEM) software. Then, three objective functions are developed to establish the relationships between the electric field and the guard ring parameters. Finally, the optimization parameters consist of diameter, tube diameter, and installation height of the corona ring. The obtained results confirm the effectiveness of the three algorithms; the MOLAO is the better in terms of computing time and solution quality.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3157384</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7179-3448</orcidid><orcidid>https://orcid.org/0000-0001-6902-5802</orcidid><orcidid>https://orcid.org/0000-0002-9387-1950</orcidid><orcidid>https://orcid.org/0000-0003-2217-6923</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2022, Vol.10, p.27579-27590 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_9729761 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB Electronic Journals Library |
subjects | Algorithms Composite insulator Computing time Corona corona ring Diameters electric field distribution Electric fields Electron tubes Finite element analysis Finite element method finite element method (FEM) Genetic algorithms Heuristic methods Insulators MOALO MOPSO multi-objective Multiple objective analysis NSGA-II Optimization Parameters Reliability aspects Sorting algorithms Transmission lines |
title | Multi-Objective Optimization of 400 kV Composite Insulator Corona Ring Design |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T15%3A24%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Objective%20Optimization%20of%20400%20kV%20Composite%20Insulator%20Corona%20Ring%20Design&rft.jtitle=IEEE%20access&rft.au=M'Hamdi,%20Benalia&rft.date=2022&rft.volume=10&rft.spage=27579&rft.epage=27590&rft.pages=27579-27590&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3157384&rft_dat=%3Cproquest_ieee_%3E2639936739%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2639936739&rft_id=info:pmid/&rft_ieee_id=9729761&rft_doaj_id=oai_doaj_org_article_7646f516deba48d8bf773aee586c1219&rfr_iscdi=true |