Dynamic Equivalents of Nonlinear Active Distribution Networks Based on Hammerstein-Wiener Models: An Application for Long-Term Power System Phenomena

In traditional power systems, the load consumption inside the distribution networks has a relatively passive behavior. Consequently, transmission system operators have commonly aggregated the load centers using static loads such as exponential load models. This is a practical approach for bulk power...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power systems 2022-11, Vol.37 (6), p.4286-4296
Hauptverfasser: Ospina, Luis David Pabon, Salazar, Valeria Usuga, Ospina, Daniel Pabon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4296
container_issue 6
container_start_page 4286
container_title IEEE transactions on power systems
container_volume 37
creator Ospina, Luis David Pabon
Salazar, Valeria Usuga
Ospina, Daniel Pabon
description In traditional power systems, the load consumption inside the distribution networks has a relatively passive behavior. Consequently, transmission system operators have commonly aggregated the load centers using static loads such as exponential load models. This is a practical approach for bulk power system stability studies. In modern systems, the impact of distributed generation units on the system dynamics can no longer be neglected. Static load models fall short to represent the highly dynamic behavior of active distribution networks. This paper proposes a methodology for equivalencing such networks while conserving the dynamics of interest for long-term stability studies. The methodology is based on Hammerstein-Wiener models that use only boundary variables measured at the distribution network point of common coupling. Therefore, unlike gray-box models, no previous knowledge about the system is required. Furthermore, the proposed methodology has a transparent relationship to linear systems and a convenient block representation that can be implemented in commercial power system analysis software using only standard elements. This allows for easy implementation, overcoming a barrier for a rather conservative sector such as power systems planning and operation. The conclusions are derived from time-domain simulations on the IEEE test system for voltage stability assessment.
doi_str_mv 10.1109/TPWRS.2022.3153117
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9721138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9721138</ieee_id><sourcerecordid>2727048793</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-40f6d2f88a3b991ae7d7c6ee1c57cdb0b32e3a039067cf9d7045dee388636de53</originalsourceid><addsrcrecordid>eNo9kMlOwzAQhi0EEmV5AbhY4pziBcc2t0LZpLIIijhGrjMBQ2IXOwX1QXhfDEWcRjPzfzPSh9AeJUNKiT6c3j3dPwwZYWzIqeCUyjU0oEKogpRSr6MBUUoUSguyibZSeiWElHkxQF_jpTeds_jsfeE-TAu-Tzg0-Cb41nkwEY9s7z4Aj13qo5stehc8voH-M8S3hE9MghrnyaXpOoipB-eLJwceIr4ONbTpGI88Hs3nrbPml21CxJPgn4spxA7fhc8cfVhmMjcv4EMH3uygjca0CXb_6jZ6PD-bnl4Wk9uLq9PRpLBMi744Ik1Zs0Ypw2daUwOylrYEoFZIW8_IjDPghnCdJdhG15IciRqAK1XysgbBt9HB6u48hvcFpL56DYvo88uKSZbjSmqeU2yVsjGkFKGp5tF1Ji4rSqof_dWv_upHf_WnP0P7K8gBwD-gJaOUK_4NBk-EOg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2727048793</pqid></control><display><type>article</type><title>Dynamic Equivalents of Nonlinear Active Distribution Networks Based on Hammerstein-Wiener Models: An Application for Long-Term Power System Phenomena</title><source>IEEE Electronic Library (IEL)</source><creator>Ospina, Luis David Pabon ; Salazar, Valeria Usuga ; Ospina, Daniel Pabon</creator><creatorcontrib>Ospina, Luis David Pabon ; Salazar, Valeria Usuga ; Ospina, Daniel Pabon</creatorcontrib><description>In traditional power systems, the load consumption inside the distribution networks has a relatively passive behavior. Consequently, transmission system operators have commonly aggregated the load centers using static loads such as exponential load models. This is a practical approach for bulk power system stability studies. In modern systems, the impact of distributed generation units on the system dynamics can no longer be neglected. Static load models fall short to represent the highly dynamic behavior of active distribution networks. This paper proposes a methodology for equivalencing such networks while conserving the dynamics of interest for long-term stability studies. The methodology is based on Hammerstein-Wiener models that use only boundary variables measured at the distribution network point of common coupling. Therefore, unlike gray-box models, no previous knowledge about the system is required. Furthermore, the proposed methodology has a transparent relationship to linear systems and a convenient block representation that can be implemented in commercial power system analysis software using only standard elements. This allows for easy implementation, overcoming a barrier for a rather conservative sector such as power systems planning and operation. The conclusions are derived from time-domain simulations on the IEEE test system for voltage stability assessment.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2022.3153117</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Active distribution networks ; Distributed generation ; Dynamic equivalents ; Dynamic stability ; Electrical loads ; Equivalence ; Hammerstein-Wiener models ; Linear systems ; Load modeling ; long-term dynamics ; Methodology ; Networks ; Power system dynamics ; Power system stability ; Stability analysis ; Static loads ; System dynamics ; System identification ; Systems analysis ; Systems planning ; Systems stability ; Time-domain analysis ; Voltage stability</subject><ispartof>IEEE transactions on power systems, 2022-11, Vol.37 (6), p.4286-4296</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-40f6d2f88a3b991ae7d7c6ee1c57cdb0b32e3a039067cf9d7045dee388636de53</citedby><cites>FETCH-LOGICAL-c295t-40f6d2f88a3b991ae7d7c6ee1c57cdb0b32e3a039067cf9d7045dee388636de53</cites><orcidid>0000-0002-9336-0210</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9721138$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27911,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9721138$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ospina, Luis David Pabon</creatorcontrib><creatorcontrib>Salazar, Valeria Usuga</creatorcontrib><creatorcontrib>Ospina, Daniel Pabon</creatorcontrib><title>Dynamic Equivalents of Nonlinear Active Distribution Networks Based on Hammerstein-Wiener Models: An Application for Long-Term Power System Phenomena</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>In traditional power systems, the load consumption inside the distribution networks has a relatively passive behavior. Consequently, transmission system operators have commonly aggregated the load centers using static loads such as exponential load models. This is a practical approach for bulk power system stability studies. In modern systems, the impact of distributed generation units on the system dynamics can no longer be neglected. Static load models fall short to represent the highly dynamic behavior of active distribution networks. This paper proposes a methodology for equivalencing such networks while conserving the dynamics of interest for long-term stability studies. The methodology is based on Hammerstein-Wiener models that use only boundary variables measured at the distribution network point of common coupling. Therefore, unlike gray-box models, no previous knowledge about the system is required. Furthermore, the proposed methodology has a transparent relationship to linear systems and a convenient block representation that can be implemented in commercial power system analysis software using only standard elements. This allows for easy implementation, overcoming a barrier for a rather conservative sector such as power systems planning and operation. The conclusions are derived from time-domain simulations on the IEEE test system for voltage stability assessment.</description><subject>Active distribution networks</subject><subject>Distributed generation</subject><subject>Dynamic equivalents</subject><subject>Dynamic stability</subject><subject>Electrical loads</subject><subject>Equivalence</subject><subject>Hammerstein-Wiener models</subject><subject>Linear systems</subject><subject>Load modeling</subject><subject>long-term dynamics</subject><subject>Methodology</subject><subject>Networks</subject><subject>Power system dynamics</subject><subject>Power system stability</subject><subject>Stability analysis</subject><subject>Static loads</subject><subject>System dynamics</subject><subject>System identification</subject><subject>Systems analysis</subject><subject>Systems planning</subject><subject>Systems stability</subject><subject>Time-domain analysis</subject><subject>Voltage stability</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMlOwzAQhi0EEmV5AbhY4pziBcc2t0LZpLIIijhGrjMBQ2IXOwX1QXhfDEWcRjPzfzPSh9AeJUNKiT6c3j3dPwwZYWzIqeCUyjU0oEKogpRSr6MBUUoUSguyibZSeiWElHkxQF_jpTeds_jsfeE-TAu-Tzg0-Cb41nkwEY9s7z4Aj13qo5stehc8voH-M8S3hE9MghrnyaXpOoipB-eLJwceIr4ONbTpGI88Hs3nrbPml21CxJPgn4spxA7fhc8cfVhmMjcv4EMH3uygjca0CXb_6jZ6PD-bnl4Wk9uLq9PRpLBMi744Ik1Zs0Ypw2daUwOylrYEoFZIW8_IjDPghnCdJdhG15IciRqAK1XysgbBt9HB6u48hvcFpL56DYvo88uKSZbjSmqeU2yVsjGkFKGp5tF1Ji4rSqof_dWv_upHf_WnP0P7K8gBwD-gJaOUK_4NBk-EOg</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Ospina, Luis David Pabon</creator><creator>Salazar, Valeria Usuga</creator><creator>Ospina, Daniel Pabon</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9336-0210</orcidid></search><sort><creationdate>20221101</creationdate><title>Dynamic Equivalents of Nonlinear Active Distribution Networks Based on Hammerstein-Wiener Models: An Application for Long-Term Power System Phenomena</title><author>Ospina, Luis David Pabon ; Salazar, Valeria Usuga ; Ospina, Daniel Pabon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-40f6d2f88a3b991ae7d7c6ee1c57cdb0b32e3a039067cf9d7045dee388636de53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Active distribution networks</topic><topic>Distributed generation</topic><topic>Dynamic equivalents</topic><topic>Dynamic stability</topic><topic>Electrical loads</topic><topic>Equivalence</topic><topic>Hammerstein-Wiener models</topic><topic>Linear systems</topic><topic>Load modeling</topic><topic>long-term dynamics</topic><topic>Methodology</topic><topic>Networks</topic><topic>Power system dynamics</topic><topic>Power system stability</topic><topic>Stability analysis</topic><topic>Static loads</topic><topic>System dynamics</topic><topic>System identification</topic><topic>Systems analysis</topic><topic>Systems planning</topic><topic>Systems stability</topic><topic>Time-domain analysis</topic><topic>Voltage stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ospina, Luis David Pabon</creatorcontrib><creatorcontrib>Salazar, Valeria Usuga</creatorcontrib><creatorcontrib>Ospina, Daniel Pabon</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ospina, Luis David Pabon</au><au>Salazar, Valeria Usuga</au><au>Ospina, Daniel Pabon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Equivalents of Nonlinear Active Distribution Networks Based on Hammerstein-Wiener Models: An Application for Long-Term Power System Phenomena</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>37</volume><issue>6</issue><spage>4286</spage><epage>4296</epage><pages>4286-4296</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>In traditional power systems, the load consumption inside the distribution networks has a relatively passive behavior. Consequently, transmission system operators have commonly aggregated the load centers using static loads such as exponential load models. This is a practical approach for bulk power system stability studies. In modern systems, the impact of distributed generation units on the system dynamics can no longer be neglected. Static load models fall short to represent the highly dynamic behavior of active distribution networks. This paper proposes a methodology for equivalencing such networks while conserving the dynamics of interest for long-term stability studies. The methodology is based on Hammerstein-Wiener models that use only boundary variables measured at the distribution network point of common coupling. Therefore, unlike gray-box models, no previous knowledge about the system is required. Furthermore, the proposed methodology has a transparent relationship to linear systems and a convenient block representation that can be implemented in commercial power system analysis software using only standard elements. This allows for easy implementation, overcoming a barrier for a rather conservative sector such as power systems planning and operation. The conclusions are derived from time-domain simulations on the IEEE test system for voltage stability assessment.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2022.3153117</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9336-0210</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8950
ispartof IEEE transactions on power systems, 2022-11, Vol.37 (6), p.4286-4296
issn 0885-8950
1558-0679
language eng
recordid cdi_ieee_primary_9721138
source IEEE Electronic Library (IEL)
subjects Active distribution networks
Distributed generation
Dynamic equivalents
Dynamic stability
Electrical loads
Equivalence
Hammerstein-Wiener models
Linear systems
Load modeling
long-term dynamics
Methodology
Networks
Power system dynamics
Power system stability
Stability analysis
Static loads
System dynamics
System identification
Systems analysis
Systems planning
Systems stability
Time-domain analysis
Voltage stability
title Dynamic Equivalents of Nonlinear Active Distribution Networks Based on Hammerstein-Wiener Models: An Application for Long-Term Power System Phenomena
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T13%3A38%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Equivalents%20of%20Nonlinear%20Active%20Distribution%20Networks%20Based%20on%20Hammerstein-Wiener%20Models:%20An%20Application%20for%20Long-Term%20Power%20System%20Phenomena&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Ospina,%20Luis%20David%20Pabon&rft.date=2022-11-01&rft.volume=37&rft.issue=6&rft.spage=4286&rft.epage=4296&rft.pages=4286-4296&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2022.3153117&rft_dat=%3Cproquest_RIE%3E2727048793%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2727048793&rft_id=info:pmid/&rft_ieee_id=9721138&rfr_iscdi=true