Dynamic Equivalents of Nonlinear Active Distribution Networks Based on Hammerstein-Wiener Models: An Application for Long-Term Power System Phenomena
In traditional power systems, the load consumption inside the distribution networks has a relatively passive behavior. Consequently, transmission system operators have commonly aggregated the load centers using static loads such as exponential load models. This is a practical approach for bulk power...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power systems 2022-11, Vol.37 (6), p.4286-4296 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4296 |
---|---|
container_issue | 6 |
container_start_page | 4286 |
container_title | IEEE transactions on power systems |
container_volume | 37 |
creator | Ospina, Luis David Pabon Salazar, Valeria Usuga Ospina, Daniel Pabon |
description | In traditional power systems, the load consumption inside the distribution networks has a relatively passive behavior. Consequently, transmission system operators have commonly aggregated the load centers using static loads such as exponential load models. This is a practical approach for bulk power system stability studies. In modern systems, the impact of distributed generation units on the system dynamics can no longer be neglected. Static load models fall short to represent the highly dynamic behavior of active distribution networks. This paper proposes a methodology for equivalencing such networks while conserving the dynamics of interest for long-term stability studies. The methodology is based on Hammerstein-Wiener models that use only boundary variables measured at the distribution network point of common coupling. Therefore, unlike gray-box models, no previous knowledge about the system is required. Furthermore, the proposed methodology has a transparent relationship to linear systems and a convenient block representation that can be implemented in commercial power system analysis software using only standard elements. This allows for easy implementation, overcoming a barrier for a rather conservative sector such as power systems planning and operation. The conclusions are derived from time-domain simulations on the IEEE test system for voltage stability assessment. |
doi_str_mv | 10.1109/TPWRS.2022.3153117 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9721138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9721138</ieee_id><sourcerecordid>2727048793</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-40f6d2f88a3b991ae7d7c6ee1c57cdb0b32e3a039067cf9d7045dee388636de53</originalsourceid><addsrcrecordid>eNo9kMlOwzAQhi0EEmV5AbhY4pziBcc2t0LZpLIIijhGrjMBQ2IXOwX1QXhfDEWcRjPzfzPSh9AeJUNKiT6c3j3dPwwZYWzIqeCUyjU0oEKogpRSr6MBUUoUSguyibZSeiWElHkxQF_jpTeds_jsfeE-TAu-Tzg0-Cb41nkwEY9s7z4Aj13qo5stehc8voH-M8S3hE9MghrnyaXpOoipB-eLJwceIr4ONbTpGI88Hs3nrbPml21CxJPgn4spxA7fhc8cfVhmMjcv4EMH3uygjca0CXb_6jZ6PD-bnl4Wk9uLq9PRpLBMi744Ik1Zs0Ypw2daUwOylrYEoFZIW8_IjDPghnCdJdhG15IciRqAK1XysgbBt9HB6u48hvcFpL56DYvo88uKSZbjSmqeU2yVsjGkFKGp5tF1Ji4rSqof_dWv_upHf_WnP0P7K8gBwD-gJaOUK_4NBk-EOg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2727048793</pqid></control><display><type>article</type><title>Dynamic Equivalents of Nonlinear Active Distribution Networks Based on Hammerstein-Wiener Models: An Application for Long-Term Power System Phenomena</title><source>IEEE Electronic Library (IEL)</source><creator>Ospina, Luis David Pabon ; Salazar, Valeria Usuga ; Ospina, Daniel Pabon</creator><creatorcontrib>Ospina, Luis David Pabon ; Salazar, Valeria Usuga ; Ospina, Daniel Pabon</creatorcontrib><description>In traditional power systems, the load consumption inside the distribution networks has a relatively passive behavior. Consequently, transmission system operators have commonly aggregated the load centers using static loads such as exponential load models. This is a practical approach for bulk power system stability studies. In modern systems, the impact of distributed generation units on the system dynamics can no longer be neglected. Static load models fall short to represent the highly dynamic behavior of active distribution networks. This paper proposes a methodology for equivalencing such networks while conserving the dynamics of interest for long-term stability studies. The methodology is based on Hammerstein-Wiener models that use only boundary variables measured at the distribution network point of common coupling. Therefore, unlike gray-box models, no previous knowledge about the system is required. Furthermore, the proposed methodology has a transparent relationship to linear systems and a convenient block representation that can be implemented in commercial power system analysis software using only standard elements. This allows for easy implementation, overcoming a barrier for a rather conservative sector such as power systems planning and operation. The conclusions are derived from time-domain simulations on the IEEE test system for voltage stability assessment.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2022.3153117</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Active distribution networks ; Distributed generation ; Dynamic equivalents ; Dynamic stability ; Electrical loads ; Equivalence ; Hammerstein-Wiener models ; Linear systems ; Load modeling ; long-term dynamics ; Methodology ; Networks ; Power system dynamics ; Power system stability ; Stability analysis ; Static loads ; System dynamics ; System identification ; Systems analysis ; Systems planning ; Systems stability ; Time-domain analysis ; Voltage stability</subject><ispartof>IEEE transactions on power systems, 2022-11, Vol.37 (6), p.4286-4296</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-40f6d2f88a3b991ae7d7c6ee1c57cdb0b32e3a039067cf9d7045dee388636de53</citedby><cites>FETCH-LOGICAL-c295t-40f6d2f88a3b991ae7d7c6ee1c57cdb0b32e3a039067cf9d7045dee388636de53</cites><orcidid>0000-0002-9336-0210</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9721138$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27911,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9721138$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ospina, Luis David Pabon</creatorcontrib><creatorcontrib>Salazar, Valeria Usuga</creatorcontrib><creatorcontrib>Ospina, Daniel Pabon</creatorcontrib><title>Dynamic Equivalents of Nonlinear Active Distribution Networks Based on Hammerstein-Wiener Models: An Application for Long-Term Power System Phenomena</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>In traditional power systems, the load consumption inside the distribution networks has a relatively passive behavior. Consequently, transmission system operators have commonly aggregated the load centers using static loads such as exponential load models. This is a practical approach for bulk power system stability studies. In modern systems, the impact of distributed generation units on the system dynamics can no longer be neglected. Static load models fall short to represent the highly dynamic behavior of active distribution networks. This paper proposes a methodology for equivalencing such networks while conserving the dynamics of interest for long-term stability studies. The methodology is based on Hammerstein-Wiener models that use only boundary variables measured at the distribution network point of common coupling. Therefore, unlike gray-box models, no previous knowledge about the system is required. Furthermore, the proposed methodology has a transparent relationship to linear systems and a convenient block representation that can be implemented in commercial power system analysis software using only standard elements. This allows for easy implementation, overcoming a barrier for a rather conservative sector such as power systems planning and operation. The conclusions are derived from time-domain simulations on the IEEE test system for voltage stability assessment.</description><subject>Active distribution networks</subject><subject>Distributed generation</subject><subject>Dynamic equivalents</subject><subject>Dynamic stability</subject><subject>Electrical loads</subject><subject>Equivalence</subject><subject>Hammerstein-Wiener models</subject><subject>Linear systems</subject><subject>Load modeling</subject><subject>long-term dynamics</subject><subject>Methodology</subject><subject>Networks</subject><subject>Power system dynamics</subject><subject>Power system stability</subject><subject>Stability analysis</subject><subject>Static loads</subject><subject>System dynamics</subject><subject>System identification</subject><subject>Systems analysis</subject><subject>Systems planning</subject><subject>Systems stability</subject><subject>Time-domain analysis</subject><subject>Voltage stability</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMlOwzAQhi0EEmV5AbhY4pziBcc2t0LZpLIIijhGrjMBQ2IXOwX1QXhfDEWcRjPzfzPSh9AeJUNKiT6c3j3dPwwZYWzIqeCUyjU0oEKogpRSr6MBUUoUSguyibZSeiWElHkxQF_jpTeds_jsfeE-TAu-Tzg0-Cb41nkwEY9s7z4Aj13qo5stehc8voH-M8S3hE9MghrnyaXpOoipB-eLJwceIr4ONbTpGI88Hs3nrbPml21CxJPgn4spxA7fhc8cfVhmMjcv4EMH3uygjca0CXb_6jZ6PD-bnl4Wk9uLq9PRpLBMi744Ik1Zs0Ypw2daUwOylrYEoFZIW8_IjDPghnCdJdhG15IciRqAK1XysgbBt9HB6u48hvcFpL56DYvo88uKSZbjSmqeU2yVsjGkFKGp5tF1Ji4rSqof_dWv_upHf_WnP0P7K8gBwD-gJaOUK_4NBk-EOg</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Ospina, Luis David Pabon</creator><creator>Salazar, Valeria Usuga</creator><creator>Ospina, Daniel Pabon</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9336-0210</orcidid></search><sort><creationdate>20221101</creationdate><title>Dynamic Equivalents of Nonlinear Active Distribution Networks Based on Hammerstein-Wiener Models: An Application for Long-Term Power System Phenomena</title><author>Ospina, Luis David Pabon ; Salazar, Valeria Usuga ; Ospina, Daniel Pabon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-40f6d2f88a3b991ae7d7c6ee1c57cdb0b32e3a039067cf9d7045dee388636de53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Active distribution networks</topic><topic>Distributed generation</topic><topic>Dynamic equivalents</topic><topic>Dynamic stability</topic><topic>Electrical loads</topic><topic>Equivalence</topic><topic>Hammerstein-Wiener models</topic><topic>Linear systems</topic><topic>Load modeling</topic><topic>long-term dynamics</topic><topic>Methodology</topic><topic>Networks</topic><topic>Power system dynamics</topic><topic>Power system stability</topic><topic>Stability analysis</topic><topic>Static loads</topic><topic>System dynamics</topic><topic>System identification</topic><topic>Systems analysis</topic><topic>Systems planning</topic><topic>Systems stability</topic><topic>Time-domain analysis</topic><topic>Voltage stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ospina, Luis David Pabon</creatorcontrib><creatorcontrib>Salazar, Valeria Usuga</creatorcontrib><creatorcontrib>Ospina, Daniel Pabon</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ospina, Luis David Pabon</au><au>Salazar, Valeria Usuga</au><au>Ospina, Daniel Pabon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Equivalents of Nonlinear Active Distribution Networks Based on Hammerstein-Wiener Models: An Application for Long-Term Power System Phenomena</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>37</volume><issue>6</issue><spage>4286</spage><epage>4296</epage><pages>4286-4296</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>In traditional power systems, the load consumption inside the distribution networks has a relatively passive behavior. Consequently, transmission system operators have commonly aggregated the load centers using static loads such as exponential load models. This is a practical approach for bulk power system stability studies. In modern systems, the impact of distributed generation units on the system dynamics can no longer be neglected. Static load models fall short to represent the highly dynamic behavior of active distribution networks. This paper proposes a methodology for equivalencing such networks while conserving the dynamics of interest for long-term stability studies. The methodology is based on Hammerstein-Wiener models that use only boundary variables measured at the distribution network point of common coupling. Therefore, unlike gray-box models, no previous knowledge about the system is required. Furthermore, the proposed methodology has a transparent relationship to linear systems and a convenient block representation that can be implemented in commercial power system analysis software using only standard elements. This allows for easy implementation, overcoming a barrier for a rather conservative sector such as power systems planning and operation. The conclusions are derived from time-domain simulations on the IEEE test system for voltage stability assessment.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2022.3153117</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9336-0210</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-8950 |
ispartof | IEEE transactions on power systems, 2022-11, Vol.37 (6), p.4286-4296 |
issn | 0885-8950 1558-0679 |
language | eng |
recordid | cdi_ieee_primary_9721138 |
source | IEEE Electronic Library (IEL) |
subjects | Active distribution networks Distributed generation Dynamic equivalents Dynamic stability Electrical loads Equivalence Hammerstein-Wiener models Linear systems Load modeling long-term dynamics Methodology Networks Power system dynamics Power system stability Stability analysis Static loads System dynamics System identification Systems analysis Systems planning Systems stability Time-domain analysis Voltage stability |
title | Dynamic Equivalents of Nonlinear Active Distribution Networks Based on Hammerstein-Wiener Models: An Application for Long-Term Power System Phenomena |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T13%3A38%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Equivalents%20of%20Nonlinear%20Active%20Distribution%20Networks%20Based%20on%20Hammerstein-Wiener%20Models:%20An%20Application%20for%20Long-Term%20Power%20System%20Phenomena&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Ospina,%20Luis%20David%20Pabon&rft.date=2022-11-01&rft.volume=37&rft.issue=6&rft.spage=4286&rft.epage=4296&rft.pages=4286-4296&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2022.3153117&rft_dat=%3Cproquest_RIE%3E2727048793%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2727048793&rft_id=info:pmid/&rft_ieee_id=9721138&rfr_iscdi=true |