Large-Scale Autonomous Flight With Real-Time Semantic SLAM Under Dense Forest Canopy
Semantic maps represent the environment using a set of semantically meaningful objects. This representation is storage-efficient, less ambiguous, and more informative, thus facilitating large-scale autonomy and the acquisition of actionable information in highly unstructured, GPS-denied environments...
Gespeichert in:
Veröffentlicht in: | IEEE robotics and automation letters 2022-04, Vol.7 (2), p.5512-5519 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5519 |
---|---|
container_issue | 2 |
container_start_page | 5512 |
container_title | IEEE robotics and automation letters |
container_volume | 7 |
creator | Liu, Xu Nardari, Guilherme V. Cladera, Fernando Tao, Yuezhan Zhou, Alex Donnelly, Thomas Qu, Chao Chen, Steven W. Romero, Roseli A. F. Taylor, Camillo J. Kumar, Vijay |
description | Semantic maps represent the environment using a set of semantically meaningful objects. This representation is storage-efficient, less ambiguous, and more informative, thus facilitating large-scale autonomy and the acquisition of actionable information in highly unstructured, GPS-denied environments. In this letter, we propose an integrated system that can perform large-scale autonomous flights and real-time semantic mapping in challenging under-canopy environments. We detect and model tree trunks and ground planes from LiDAR data, which are associated across scans and used to constrain robot poses as well as tree trunk models. The autonomous navigation module utilizes a multi-level planning and mapping framework and computes dynamically feasible trajectories that lead the UAV to build a semantic map of the user-defined region of interest in a computationally and storage efficient manner. A drift-compensation mechanism is designed to minimize the odometry drift using semantic SLAM outputs in real time, while maintaining planner optimality and controller stability. This leads the UAV to execute its mission accurately and safely at scale. |
doi_str_mv | 10.1109/LRA.2022.3154047 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9720974</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9720974</ieee_id><sourcerecordid>2640432033</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-bc643d148ce06a1ea3cc6db4d172b36aecd6ffcf1b23d87f721e06974e18ca3</originalsourceid><addsrcrecordid>eNpNkM9LwzAYhoMoOObugpeA58786JL1WKZToSKsFY8hTb9uHW0zk_aw_96MDfH0fYf3fR94ELqnZE4pSZ6yTTpnhLE5p4uYxPIKTRiXMuJSiOt__y2aeb8nhNAFkzxZTFCRabeFKDe6BZyOg-1tZ0eP122z3Q34uxl2eAO6jYqmA5xDp_uhMTjP0g_81Vfg8DP0HvDaOvADXuneHo536KbWrYfZ5U5Rvn4pVm9R9vn6vkqzyHDOh6g0IuYVjZcGiNAUNDdGVGVcUclKLjSYStS1qWnJeLWUtWQ0BBMZA10azafo8bx6cPZnDHS1t6PrA1AxESxwRgJmisg5ZZz13kGtDq7ptDsqStRJngry1EmeusgLlYdzpQGAv3giGQls_gt1f2na</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2640432033</pqid></control><display><type>article</type><title>Large-Scale Autonomous Flight With Real-Time Semantic SLAM Under Dense Forest Canopy</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Xu ; Nardari, Guilherme V. ; Cladera, Fernando ; Tao, Yuezhan ; Zhou, Alex ; Donnelly, Thomas ; Qu, Chao ; Chen, Steven W. ; Romero, Roseli A. F. ; Taylor, Camillo J. ; Kumar, Vijay</creator><creatorcontrib>Liu, Xu ; Nardari, Guilherme V. ; Cladera, Fernando ; Tao, Yuezhan ; Zhou, Alex ; Donnelly, Thomas ; Qu, Chao ; Chen, Steven W. ; Romero, Roseli A. F. ; Taylor, Camillo J. ; Kumar, Vijay</creatorcontrib><description>Semantic maps represent the environment using a set of semantically meaningful objects. This representation is storage-efficient, less ambiguous, and more informative, thus facilitating large-scale autonomy and the acquisition of actionable information in highly unstructured, GPS-denied environments. In this letter, we propose an integrated system that can perform large-scale autonomous flights and real-time semantic mapping in challenging under-canopy environments. We detect and model tree trunks and ground planes from LiDAR data, which are associated across scans and used to constrain robot poses as well as tree trunk models. The autonomous navigation module utilizes a multi-level planning and mapping framework and computes dynamically feasible trajectories that lead the UAV to build a semantic map of the user-defined region of interest in a computationally and storage efficient manner. A drift-compensation mechanism is designed to minimize the odometry drift using semantic SLAM outputs in real time, while maintaining planner optimality and controller stability. This leads the UAV to execute its mission accurately and safely at scale.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2022.3154047</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Aerial systems: perception and autonomy ; Autonomous aerial vehicles ; Autonomous navigation ; Autonomy ; Canopies ; Computational modeling ; Control stability ; Data models ; Drift ; field robotics ; Forestry ; Ground plane ; Mapping ; Planning ; Real time ; Real-time systems ; robotics and automation in agriculture and forestry ; Semantics ; Simultaneous localization and mapping ; SLAM ; Stability analysis ; Trajectory ; Unmanned aerial vehicles ; Unstructured data</subject><ispartof>IEEE robotics and automation letters, 2022-04, Vol.7 (2), p.5512-5519</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-bc643d148ce06a1ea3cc6db4d172b36aecd6ffcf1b23d87f721e06974e18ca3</citedby><cites>FETCH-LOGICAL-c333t-bc643d148ce06a1ea3cc6db4d172b36aecd6ffcf1b23d87f721e06974e18ca3</cites><orcidid>0000-0001-9136-4691 ; 0000-0003-2164-6196 ; 0000-0002-7339-5475 ; 0000-0002-5926-7557 ; 0000-0001-9366-2780 ; 0000-0002-9332-5087 ; 0000-0002-3902-9391 ; 0000-0003-3155-0171 ; 0000-0002-7448-8411</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9720974$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9720974$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Xu</creatorcontrib><creatorcontrib>Nardari, Guilherme V.</creatorcontrib><creatorcontrib>Cladera, Fernando</creatorcontrib><creatorcontrib>Tao, Yuezhan</creatorcontrib><creatorcontrib>Zhou, Alex</creatorcontrib><creatorcontrib>Donnelly, Thomas</creatorcontrib><creatorcontrib>Qu, Chao</creatorcontrib><creatorcontrib>Chen, Steven W.</creatorcontrib><creatorcontrib>Romero, Roseli A. F.</creatorcontrib><creatorcontrib>Taylor, Camillo J.</creatorcontrib><creatorcontrib>Kumar, Vijay</creatorcontrib><title>Large-Scale Autonomous Flight With Real-Time Semantic SLAM Under Dense Forest Canopy</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>Semantic maps represent the environment using a set of semantically meaningful objects. This representation is storage-efficient, less ambiguous, and more informative, thus facilitating large-scale autonomy and the acquisition of actionable information in highly unstructured, GPS-denied environments. In this letter, we propose an integrated system that can perform large-scale autonomous flights and real-time semantic mapping in challenging under-canopy environments. We detect and model tree trunks and ground planes from LiDAR data, which are associated across scans and used to constrain robot poses as well as tree trunk models. The autonomous navigation module utilizes a multi-level planning and mapping framework and computes dynamically feasible trajectories that lead the UAV to build a semantic map of the user-defined region of interest in a computationally and storage efficient manner. A drift-compensation mechanism is designed to minimize the odometry drift using semantic SLAM outputs in real time, while maintaining planner optimality and controller stability. This leads the UAV to execute its mission accurately and safely at scale.</description><subject>Aerial systems: perception and autonomy</subject><subject>Autonomous aerial vehicles</subject><subject>Autonomous navigation</subject><subject>Autonomy</subject><subject>Canopies</subject><subject>Computational modeling</subject><subject>Control stability</subject><subject>Data models</subject><subject>Drift</subject><subject>field robotics</subject><subject>Forestry</subject><subject>Ground plane</subject><subject>Mapping</subject><subject>Planning</subject><subject>Real time</subject><subject>Real-time systems</subject><subject>robotics and automation in agriculture and forestry</subject><subject>Semantics</subject><subject>Simultaneous localization and mapping</subject><subject>SLAM</subject><subject>Stability analysis</subject><subject>Trajectory</subject><subject>Unmanned aerial vehicles</subject><subject>Unstructured data</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM9LwzAYhoMoOObugpeA58786JL1WKZToSKsFY8hTb9uHW0zk_aw_96MDfH0fYf3fR94ELqnZE4pSZ6yTTpnhLE5p4uYxPIKTRiXMuJSiOt__y2aeb8nhNAFkzxZTFCRabeFKDe6BZyOg-1tZ0eP122z3Q34uxl2eAO6jYqmA5xDp_uhMTjP0g_81Vfg8DP0HvDaOvADXuneHo536KbWrYfZ5U5Rvn4pVm9R9vn6vkqzyHDOh6g0IuYVjZcGiNAUNDdGVGVcUclKLjSYStS1qWnJeLWUtWQ0BBMZA10azafo8bx6cPZnDHS1t6PrA1AxESxwRgJmisg5ZZz13kGtDq7ptDsqStRJngry1EmeusgLlYdzpQGAv3giGQls_gt1f2na</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Liu, Xu</creator><creator>Nardari, Guilherme V.</creator><creator>Cladera, Fernando</creator><creator>Tao, Yuezhan</creator><creator>Zhou, Alex</creator><creator>Donnelly, Thomas</creator><creator>Qu, Chao</creator><creator>Chen, Steven W.</creator><creator>Romero, Roseli A. F.</creator><creator>Taylor, Camillo J.</creator><creator>Kumar, Vijay</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9136-4691</orcidid><orcidid>https://orcid.org/0000-0003-2164-6196</orcidid><orcidid>https://orcid.org/0000-0002-7339-5475</orcidid><orcidid>https://orcid.org/0000-0002-5926-7557</orcidid><orcidid>https://orcid.org/0000-0001-9366-2780</orcidid><orcidid>https://orcid.org/0000-0002-9332-5087</orcidid><orcidid>https://orcid.org/0000-0002-3902-9391</orcidid><orcidid>https://orcid.org/0000-0003-3155-0171</orcidid><orcidid>https://orcid.org/0000-0002-7448-8411</orcidid></search><sort><creationdate>20220401</creationdate><title>Large-Scale Autonomous Flight With Real-Time Semantic SLAM Under Dense Forest Canopy</title><author>Liu, Xu ; Nardari, Guilherme V. ; Cladera, Fernando ; Tao, Yuezhan ; Zhou, Alex ; Donnelly, Thomas ; Qu, Chao ; Chen, Steven W. ; Romero, Roseli A. F. ; Taylor, Camillo J. ; Kumar, Vijay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-bc643d148ce06a1ea3cc6db4d172b36aecd6ffcf1b23d87f721e06974e18ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aerial systems: perception and autonomy</topic><topic>Autonomous aerial vehicles</topic><topic>Autonomous navigation</topic><topic>Autonomy</topic><topic>Canopies</topic><topic>Computational modeling</topic><topic>Control stability</topic><topic>Data models</topic><topic>Drift</topic><topic>field robotics</topic><topic>Forestry</topic><topic>Ground plane</topic><topic>Mapping</topic><topic>Planning</topic><topic>Real time</topic><topic>Real-time systems</topic><topic>robotics and automation in agriculture and forestry</topic><topic>Semantics</topic><topic>Simultaneous localization and mapping</topic><topic>SLAM</topic><topic>Stability analysis</topic><topic>Trajectory</topic><topic>Unmanned aerial vehicles</topic><topic>Unstructured data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xu</creatorcontrib><creatorcontrib>Nardari, Guilherme V.</creatorcontrib><creatorcontrib>Cladera, Fernando</creatorcontrib><creatorcontrib>Tao, Yuezhan</creatorcontrib><creatorcontrib>Zhou, Alex</creatorcontrib><creatorcontrib>Donnelly, Thomas</creatorcontrib><creatorcontrib>Qu, Chao</creatorcontrib><creatorcontrib>Chen, Steven W.</creatorcontrib><creatorcontrib>Romero, Roseli A. F.</creatorcontrib><creatorcontrib>Taylor, Camillo J.</creatorcontrib><creatorcontrib>Kumar, Vijay</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Xu</au><au>Nardari, Guilherme V.</au><au>Cladera, Fernando</au><au>Tao, Yuezhan</au><au>Zhou, Alex</au><au>Donnelly, Thomas</au><au>Qu, Chao</au><au>Chen, Steven W.</au><au>Romero, Roseli A. F.</au><au>Taylor, Camillo J.</au><au>Kumar, Vijay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large-Scale Autonomous Flight With Real-Time Semantic SLAM Under Dense Forest Canopy</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>7</volume><issue>2</issue><spage>5512</spage><epage>5519</epage><pages>5512-5519</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>Semantic maps represent the environment using a set of semantically meaningful objects. This representation is storage-efficient, less ambiguous, and more informative, thus facilitating large-scale autonomy and the acquisition of actionable information in highly unstructured, GPS-denied environments. In this letter, we propose an integrated system that can perform large-scale autonomous flights and real-time semantic mapping in challenging under-canopy environments. We detect and model tree trunks and ground planes from LiDAR data, which are associated across scans and used to constrain robot poses as well as tree trunk models. The autonomous navigation module utilizes a multi-level planning and mapping framework and computes dynamically feasible trajectories that lead the UAV to build a semantic map of the user-defined region of interest in a computationally and storage efficient manner. A drift-compensation mechanism is designed to minimize the odometry drift using semantic SLAM outputs in real time, while maintaining planner optimality and controller stability. This leads the UAV to execute its mission accurately and safely at scale.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2022.3154047</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-9136-4691</orcidid><orcidid>https://orcid.org/0000-0003-2164-6196</orcidid><orcidid>https://orcid.org/0000-0002-7339-5475</orcidid><orcidid>https://orcid.org/0000-0002-5926-7557</orcidid><orcidid>https://orcid.org/0000-0001-9366-2780</orcidid><orcidid>https://orcid.org/0000-0002-9332-5087</orcidid><orcidid>https://orcid.org/0000-0002-3902-9391</orcidid><orcidid>https://orcid.org/0000-0003-3155-0171</orcidid><orcidid>https://orcid.org/0000-0002-7448-8411</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2377-3766 |
ispartof | IEEE robotics and automation letters, 2022-04, Vol.7 (2), p.5512-5519 |
issn | 2377-3766 2377-3766 |
language | eng |
recordid | cdi_ieee_primary_9720974 |
source | IEEE Electronic Library (IEL) |
subjects | Aerial systems: perception and autonomy Autonomous aerial vehicles Autonomous navigation Autonomy Canopies Computational modeling Control stability Data models Drift field robotics Forestry Ground plane Mapping Planning Real time Real-time systems robotics and automation in agriculture and forestry Semantics Simultaneous localization and mapping SLAM Stability analysis Trajectory Unmanned aerial vehicles Unstructured data |
title | Large-Scale Autonomous Flight With Real-Time Semantic SLAM Under Dense Forest Canopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A48%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large-Scale%20Autonomous%20Flight%20With%20Real-Time%20Semantic%20SLAM%20Under%20Dense%20Forest%20Canopy&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Liu,%20Xu&rft.date=2022-04-01&rft.volume=7&rft.issue=2&rft.spage=5512&rft.epage=5519&rft.pages=5512-5519&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2022.3154047&rft_dat=%3Cproquest_RIE%3E2640432033%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2640432033&rft_id=info:pmid/&rft_ieee_id=9720974&rfr_iscdi=true |