Properties of Nb3Sn Superconductors of Various Designs

To manufacture a high field magnet it is required to have Nb 3 Sn superconductors with high current-carrying capability in magnetic fields up to 18 T. For example, CERN has chosen Nb 3 Sn together with HTS as potential material for high field magnet of Future Circular Collider (FCC) project. Also, t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on applied superconductivity 2022-06, Vol.32 (4), p.1-5
Hauptverfasser: Tsapleva, A. S., Konovalova, N. V., Mareev, K. A., Abdyukhanov, I. M., Alekseev, M. V., Savelyev, I. I, Dezhurnov, Alexander, Novosilova, D. S., Krylova, M. V., Zernov, S. M., Shlyakhov, M. Y., Eseneev, A. V., Kropachev, A. S., Krymskaya, O. S., Isaenkova, M. G., Vasiliev, A. L., Artemov, V. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue 4
container_start_page 1
container_title IEEE transactions on applied superconductivity
container_volume 32
creator Tsapleva, A. S.
Konovalova, N. V.
Mareev, K. A.
Abdyukhanov, I. M.
Alekseev, M. V.
Savelyev, I. I
Dezhurnov, Alexander
Novosilova, D. S.
Krylova, M. V.
Zernov, S. M.
Shlyakhov, M. Y.
Eseneev, A. V.
Kropachev, A. S.
Krymskaya, O. S.
Isaenkova, M. G.
Vasiliev, A. L.
Artemov, V. V.
description To manufacture a high field magnet it is required to have Nb 3 Sn superconductors with high current-carrying capability in magnetic fields up to 18 T. For example, CERN has chosen Nb 3 Sn together with HTS as potential material for high field magnet of Future Circular Collider (FCC) project. Also, these superconductors must have an RRR of more than 150 and a low level of energy loss. One of the ways to achieve high current density is to use Internal Tin method to manufacture Nb 3 Sn superconductors. In this paper, Internal Tin Nb 3 Sn strands with 37, 54, 84 and 120 sub-elements are studied. Using TEM and SEM analysis, the structure and elemental composition of the superconducting layer were investigated. The analysis of the measurement results of electrophysical parameters showed that with an increase in the number of subelements from 37 to 120, at the same heat treatment mode of 370°C, 100 h + 665°C, 40 h, the critical current density measured in the range of magnetic fields from 12 to 23 T for strands of different designs practically does not changes significantly, and the RRR parameter decreases from 280 to 110 units and the effective filament diameter decreases from 139 to 70 micrometers.
doi_str_mv 10.1109/TASC.2022.3152707
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9718201</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9718201</ieee_id><sourcerecordid>2647426902</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-3c9bb2d115b8b65751c0831adcc35a5d27ea7e32993162f8494bf192cada839c3</originalsourceid><addsrcrecordid>eNotjU1LxDAYhIMouK7-APFS8Nya903SJMelfsKiQlevJU1TyaJNTdqD_97iepph5mGGkEugBQDVN7tNXRVIEQsGAiWVR2QFQqgcBYjjxVMBuUJkp-QspT2lwBUXK1K-xjC6OHmXstBnzy2rh6yel8iGoZvtFOJf8W6iD3PKbl3yH0M6Jye9-Uzu4l_X5O3-blc95tuXh6dqs809UjblzOq2xQ5AtKothRRgqWJgOmuZMKJD6Yx0DLVmUGKvuOZtDxqt6Yxi2rI1uT7sjjF8zy5NzT7McVguGyy55Fhqigt1daC8c64Zo_8y8afREhRSYL-1flBe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2647426902</pqid></control><display><type>article</type><title>Properties of Nb3Sn Superconductors of Various Designs</title><source>IEEE Electronic Library (IEL)</source><creator>Tsapleva, A. S. ; Konovalova, N. V. ; Mareev, K. A. ; Abdyukhanov, I. M. ; Alekseev, M. V. ; Savelyev, I. I ; Dezhurnov, Alexander ; Novosilova, D. S. ; Krylova, M. V. ; Zernov, S. M. ; Shlyakhov, M. Y. ; Eseneev, A. V. ; Kropachev, A. S. ; Krymskaya, O. S. ; Isaenkova, M. G. ; Vasiliev, A. L. ; Artemov, V. V.</creator><creatorcontrib>Tsapleva, A. S. ; Konovalova, N. V. ; Mareev, K. A. ; Abdyukhanov, I. M. ; Alekseev, M. V. ; Savelyev, I. I ; Dezhurnov, Alexander ; Novosilova, D. S. ; Krylova, M. V. ; Zernov, S. M. ; Shlyakhov, M. Y. ; Eseneev, A. V. ; Kropachev, A. S. ; Krymskaya, O. S. ; Isaenkova, M. G. ; Vasiliev, A. L. ; Artemov, V. V.</creatorcontrib><description>To manufacture a high field magnet it is required to have Nb 3 Sn superconductors with high current-carrying capability in magnetic fields up to 18 T. For example, CERN has chosen Nb 3 Sn together with HTS as potential material for high field magnet of Future Circular Collider (FCC) project. Also, these superconductors must have an RRR of more than 150 and a low level of energy loss. One of the ways to achieve high current density is to use Internal Tin method to manufacture Nb 3 Sn superconductors. In this paper, Internal Tin Nb 3 Sn strands with 37, 54, 84 and 120 sub-elements are studied. Using TEM and SEM analysis, the structure and elemental composition of the superconducting layer were investigated. The analysis of the measurement results of electrophysical parameters showed that with an increase in the number of subelements from 37 to 120, at the same heat treatment mode of 370°C, 100 h + 665°C, 40 h, the critical current density measured in the range of magnetic fields from 12 to 23 T for strands of different designs practically does not changes significantly, and the RRR parameter decreases from 280 to 110 units and the effective filament diameter decreases from 139 to 70 micrometers.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2022.3152707</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Critical current density ; Current measurement ; Diameters ; Energy dissipation ; Grain size ; Heat treatment ; High current ; Low level ; Magnetic field measurement ; Magnetic fields ; Micrometers ; Nb3Sn superconductor ; Parameters ; RRR ; Strands ; subelement ; Superconductivity ; Superconductors ; Tin</subject><ispartof>IEEE transactions on applied superconductivity, 2022-06, Vol.32 (4), p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9182-742X ; 0000-0002-9486-4007 ; 0000-0002-3290-3250 ; 0000-0003-2020-4185 ; 0000-0003-0088-9156</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9718201$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9718201$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tsapleva, A. S.</creatorcontrib><creatorcontrib>Konovalova, N. V.</creatorcontrib><creatorcontrib>Mareev, K. A.</creatorcontrib><creatorcontrib>Abdyukhanov, I. M.</creatorcontrib><creatorcontrib>Alekseev, M. V.</creatorcontrib><creatorcontrib>Savelyev, I. I</creatorcontrib><creatorcontrib>Dezhurnov, Alexander</creatorcontrib><creatorcontrib>Novosilova, D. S.</creatorcontrib><creatorcontrib>Krylova, M. V.</creatorcontrib><creatorcontrib>Zernov, S. M.</creatorcontrib><creatorcontrib>Shlyakhov, M. Y.</creatorcontrib><creatorcontrib>Eseneev, A. V.</creatorcontrib><creatorcontrib>Kropachev, A. S.</creatorcontrib><creatorcontrib>Krymskaya, O. S.</creatorcontrib><creatorcontrib>Isaenkova, M. G.</creatorcontrib><creatorcontrib>Vasiliev, A. L.</creatorcontrib><creatorcontrib>Artemov, V. V.</creatorcontrib><title>Properties of Nb3Sn Superconductors of Various Designs</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>To manufacture a high field magnet it is required to have Nb 3 Sn superconductors with high current-carrying capability in magnetic fields up to 18 T. For example, CERN has chosen Nb 3 Sn together with HTS as potential material for high field magnet of Future Circular Collider (FCC) project. Also, these superconductors must have an RRR of more than 150 and a low level of energy loss. One of the ways to achieve high current density is to use Internal Tin method to manufacture Nb 3 Sn superconductors. In this paper, Internal Tin Nb 3 Sn strands with 37, 54, 84 and 120 sub-elements are studied. Using TEM and SEM analysis, the structure and elemental composition of the superconducting layer were investigated. The analysis of the measurement results of electrophysical parameters showed that with an increase in the number of subelements from 37 to 120, at the same heat treatment mode of 370°C, 100 h + 665°C, 40 h, the critical current density measured in the range of magnetic fields from 12 to 23 T for strands of different designs practically does not changes significantly, and the RRR parameter decreases from 280 to 110 units and the effective filament diameter decreases from 139 to 70 micrometers.</description><subject>Critical current density</subject><subject>Current measurement</subject><subject>Diameters</subject><subject>Energy dissipation</subject><subject>Grain size</subject><subject>Heat treatment</subject><subject>High current</subject><subject>Low level</subject><subject>Magnetic field measurement</subject><subject>Magnetic fields</subject><subject>Micrometers</subject><subject>Nb3Sn superconductor</subject><subject>Parameters</subject><subject>RRR</subject><subject>Strands</subject><subject>subelement</subject><subject>Superconductivity</subject><subject>Superconductors</subject><subject>Tin</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNotjU1LxDAYhIMouK7-APFS8Nya903SJMelfsKiQlevJU1TyaJNTdqD_97iepph5mGGkEugBQDVN7tNXRVIEQsGAiWVR2QFQqgcBYjjxVMBuUJkp-QspT2lwBUXK1K-xjC6OHmXstBnzy2rh6yel8iGoZvtFOJf8W6iD3PKbl3yH0M6Jye9-Uzu4l_X5O3-blc95tuXh6dqs809UjblzOq2xQ5AtKothRRgqWJgOmuZMKJD6Yx0DLVmUGKvuOZtDxqt6Yxi2rI1uT7sjjF8zy5NzT7McVguGyy55Fhqigt1daC8c64Zo_8y8afREhRSYL-1flBe</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Tsapleva, A. S.</creator><creator>Konovalova, N. V.</creator><creator>Mareev, K. A.</creator><creator>Abdyukhanov, I. M.</creator><creator>Alekseev, M. V.</creator><creator>Savelyev, I. I</creator><creator>Dezhurnov, Alexander</creator><creator>Novosilova, D. S.</creator><creator>Krylova, M. V.</creator><creator>Zernov, S. M.</creator><creator>Shlyakhov, M. Y.</creator><creator>Eseneev, A. V.</creator><creator>Kropachev, A. S.</creator><creator>Krymskaya, O. S.</creator><creator>Isaenkova, M. G.</creator><creator>Vasiliev, A. L.</creator><creator>Artemov, V. V.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9182-742X</orcidid><orcidid>https://orcid.org/0000-0002-9486-4007</orcidid><orcidid>https://orcid.org/0000-0002-3290-3250</orcidid><orcidid>https://orcid.org/0000-0003-2020-4185</orcidid><orcidid>https://orcid.org/0000-0003-0088-9156</orcidid></search><sort><creationdate>20220601</creationdate><title>Properties of Nb3Sn Superconductors of Various Designs</title><author>Tsapleva, A. S. ; Konovalova, N. V. ; Mareev, K. A. ; Abdyukhanov, I. M. ; Alekseev, M. V. ; Savelyev, I. I ; Dezhurnov, Alexander ; Novosilova, D. S. ; Krylova, M. V. ; Zernov, S. M. ; Shlyakhov, M. Y. ; Eseneev, A. V. ; Kropachev, A. S. ; Krymskaya, O. S. ; Isaenkova, M. G. ; Vasiliev, A. L. ; Artemov, V. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-3c9bb2d115b8b65751c0831adcc35a5d27ea7e32993162f8494bf192cada839c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Critical current density</topic><topic>Current measurement</topic><topic>Diameters</topic><topic>Energy dissipation</topic><topic>Grain size</topic><topic>Heat treatment</topic><topic>High current</topic><topic>Low level</topic><topic>Magnetic field measurement</topic><topic>Magnetic fields</topic><topic>Micrometers</topic><topic>Nb3Sn superconductor</topic><topic>Parameters</topic><topic>RRR</topic><topic>Strands</topic><topic>subelement</topic><topic>Superconductivity</topic><topic>Superconductors</topic><topic>Tin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsapleva, A. S.</creatorcontrib><creatorcontrib>Konovalova, N. V.</creatorcontrib><creatorcontrib>Mareev, K. A.</creatorcontrib><creatorcontrib>Abdyukhanov, I. M.</creatorcontrib><creatorcontrib>Alekseev, M. V.</creatorcontrib><creatorcontrib>Savelyev, I. I</creatorcontrib><creatorcontrib>Dezhurnov, Alexander</creatorcontrib><creatorcontrib>Novosilova, D. S.</creatorcontrib><creatorcontrib>Krylova, M. V.</creatorcontrib><creatorcontrib>Zernov, S. M.</creatorcontrib><creatorcontrib>Shlyakhov, M. Y.</creatorcontrib><creatorcontrib>Eseneev, A. V.</creatorcontrib><creatorcontrib>Kropachev, A. S.</creatorcontrib><creatorcontrib>Krymskaya, O. S.</creatorcontrib><creatorcontrib>Isaenkova, M. G.</creatorcontrib><creatorcontrib>Vasiliev, A. L.</creatorcontrib><creatorcontrib>Artemov, V. V.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tsapleva, A. S.</au><au>Konovalova, N. V.</au><au>Mareev, K. A.</au><au>Abdyukhanov, I. M.</au><au>Alekseev, M. V.</au><au>Savelyev, I. I</au><au>Dezhurnov, Alexander</au><au>Novosilova, D. S.</au><au>Krylova, M. V.</au><au>Zernov, S. M.</au><au>Shlyakhov, M. Y.</au><au>Eseneev, A. V.</au><au>Kropachev, A. S.</au><au>Krymskaya, O. S.</au><au>Isaenkova, M. G.</au><au>Vasiliev, A. L.</au><au>Artemov, V. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Properties of Nb3Sn Superconductors of Various Designs</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>32</volume><issue>4</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>To manufacture a high field magnet it is required to have Nb 3 Sn superconductors with high current-carrying capability in magnetic fields up to 18 T. For example, CERN has chosen Nb 3 Sn together with HTS as potential material for high field magnet of Future Circular Collider (FCC) project. Also, these superconductors must have an RRR of more than 150 and a low level of energy loss. One of the ways to achieve high current density is to use Internal Tin method to manufacture Nb 3 Sn superconductors. In this paper, Internal Tin Nb 3 Sn strands with 37, 54, 84 and 120 sub-elements are studied. Using TEM and SEM analysis, the structure and elemental composition of the superconducting layer were investigated. The analysis of the measurement results of electrophysical parameters showed that with an increase in the number of subelements from 37 to 120, at the same heat treatment mode of 370°C, 100 h + 665°C, 40 h, the critical current density measured in the range of magnetic fields from 12 to 23 T for strands of different designs practically does not changes significantly, and the RRR parameter decreases from 280 to 110 units and the effective filament diameter decreases from 139 to 70 micrometers.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASC.2022.3152707</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-9182-742X</orcidid><orcidid>https://orcid.org/0000-0002-9486-4007</orcidid><orcidid>https://orcid.org/0000-0002-3290-3250</orcidid><orcidid>https://orcid.org/0000-0003-2020-4185</orcidid><orcidid>https://orcid.org/0000-0003-0088-9156</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 2022-06, Vol.32 (4), p.1-5
issn 1051-8223
1558-2515
language eng
recordid cdi_ieee_primary_9718201
source IEEE Electronic Library (IEL)
subjects Critical current density
Current measurement
Diameters
Energy dissipation
Grain size
Heat treatment
High current
Low level
Magnetic field measurement
Magnetic fields
Micrometers
Nb3Sn superconductor
Parameters
RRR
Strands
subelement
Superconductivity
Superconductors
Tin
title Properties of Nb3Sn Superconductors of Various Designs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A14%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Properties%20of%20Nb3Sn%20Superconductors%20of%20Various%20Designs&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Tsapleva,%20A.%20S.&rft.date=2022-06-01&rft.volume=32&rft.issue=4&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2022.3152707&rft_dat=%3Cproquest_RIE%3E2647426902%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2647426902&rft_id=info:pmid/&rft_ieee_id=9718201&rfr_iscdi=true