Semi-Supervised Learning via Bipartite Graph Construction With Adaptive Neighbors

Graph-based semi-supervised learning, which further utilizes graph structure behind samples for boosting semi-supervised learning, gains convincing results in several machine learning tasks. Nevertheless, existing graph-based methods have shortcomings from two aspects. On the one hand, many of them...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on knowledge and data engineering 2023-05, Vol.35 (5), p.5257-5268
Hauptverfasser: Wang, Zhen, Zhang, Long, Wang, Rong, Nie, Feiping, Li, Xuelong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5268
container_issue 5
container_start_page 5257
container_title IEEE transactions on knowledge and data engineering
container_volume 35
creator Wang, Zhen
Zhang, Long
Wang, Rong
Nie, Feiping
Li, Xuelong
description Graph-based semi-supervised learning, which further utilizes graph structure behind samples for boosting semi-supervised learning, gains convincing results in several machine learning tasks. Nevertheless, existing graph-based methods have shortcomings from two aspects. On the one hand, many of them concentrate on improving label propagation over the constructed graph through time-saving methods, e.g., path searching, without giving insights on constructing a proper graph accommodated to samples. On the other hand, some models are only devoted to constructing the appropriate graph resulting in a two-stage procedure, which may incur a suboptimal scenario. In this paper, we develop a joint learning method that considers both bipartite graph construction and label propagation simultaneously. With this configuration, the constructed graph is constantly adjusted by the smoothness term in the objective as the algorithm proceeds. The time complexity of our method gets significant improvement compared with traditional graph-based methods, and the experimental results on one synthetic dataset and several real-world benchmarks demonstrate the effectiveness and scalability of our proposed method.
doi_str_mv 10.1109/TKDE.2022.3151315
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9713698</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9713698</ieee_id><sourcerecordid>2795804138</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-8748b4d5143de965472cc0599e0d6051d98edb73f71f8fea2e903e9ab875cc013</originalsourceid><addsrcrecordid>eNo9kFFLwzAQx4MoOKcfQHwJ-NyZa5oleZxzTnEosomPIW2vW4a2NUkHfns7Nnw47h5-_zvuR8g1sBEA03erl4fZKGVpOuIgoK8TMgAhVJKChtN-ZhkkGc_kObkIYcsYU1LBgLwv8dsly65Fv3MBS7pA62tXr-nOWXrvWuuji0jn3rYbOm3qEH1XRNfU9NPFDZ2Uto1uh_QV3XqTNz5ckrPKfgW8OvYh-XicraZPyeJt_jydLJKC83FMlMxUnpUCMl6iHotMpkXBhNbIyjETUGqFZS55JaFSFdoUNeOoba6k6EHgQ3J72Nv65qfDEM226XzdnzSp1EL1D3PVU3CgCt-E4LEyrXff1v8aYGZvzuzNmb05czTXZ24OGYeI_7yWwMda8T-CRGm8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2795804138</pqid></control><display><type>article</type><title>Semi-Supervised Learning via Bipartite Graph Construction With Adaptive Neighbors</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Zhen ; Zhang, Long ; Wang, Rong ; Nie, Feiping ; Li, Xuelong</creator><creatorcontrib>Wang, Zhen ; Zhang, Long ; Wang, Rong ; Nie, Feiping ; Li, Xuelong</creatorcontrib><description>Graph-based semi-supervised learning, which further utilizes graph structure behind samples for boosting semi-supervised learning, gains convincing results in several machine learning tasks. Nevertheless, existing graph-based methods have shortcomings from two aspects. On the one hand, many of them concentrate on improving label propagation over the constructed graph through time-saving methods, e.g., path searching, without giving insights on constructing a proper graph accommodated to samples. On the other hand, some models are only devoted to constructing the appropriate graph resulting in a two-stage procedure, which may incur a suboptimal scenario. In this paper, we develop a joint learning method that considers both bipartite graph construction and label propagation simultaneously. With this configuration, the constructed graph is constantly adjusted by the smoothness term in the objective as the algorithm proceeds. The time complexity of our method gets significant improvement compared with traditional graph-based methods, and the experimental results on one synthetic dataset and several real-world benchmarks demonstrate the effectiveness and scalability of our proposed method.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2022.3151315</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Bipartite graph ; Cognitive tasks ; Computational modeling ; Graph theory ; Graph-based semi-supervised learning ; Graphs ; joint learning ; Laplace equations ; Machine learning ; Propagation ; Scalability ; Semi-supervised learning ; Semisupervised learning ; Smoothness ; Synthetic data ; Task analysis ; Vegetation</subject><ispartof>IEEE transactions on knowledge and data engineering, 2023-05, Vol.35 (5), p.5257-5268</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-8748b4d5143de965472cc0599e0d6051d98edb73f71f8fea2e903e9ab875cc013</citedby><cites>FETCH-LOGICAL-c336t-8748b4d5143de965472cc0599e0d6051d98edb73f71f8fea2e903e9ab875cc013</cites><orcidid>0000-0002-8182-2852 ; 0000-0001-7380-6388 ; 0000-0002-0871-6519 ; 0000-0001-9240-6726 ; 0000-0003-2924-946X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9713698$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9713698$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Zhen</creatorcontrib><creatorcontrib>Zhang, Long</creatorcontrib><creatorcontrib>Wang, Rong</creatorcontrib><creatorcontrib>Nie, Feiping</creatorcontrib><creatorcontrib>Li, Xuelong</creatorcontrib><title>Semi-Supervised Learning via Bipartite Graph Construction With Adaptive Neighbors</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>Graph-based semi-supervised learning, which further utilizes graph structure behind samples for boosting semi-supervised learning, gains convincing results in several machine learning tasks. Nevertheless, existing graph-based methods have shortcomings from two aspects. On the one hand, many of them concentrate on improving label propagation over the constructed graph through time-saving methods, e.g., path searching, without giving insights on constructing a proper graph accommodated to samples. On the other hand, some models are only devoted to constructing the appropriate graph resulting in a two-stage procedure, which may incur a suboptimal scenario. In this paper, we develop a joint learning method that considers both bipartite graph construction and label propagation simultaneously. With this configuration, the constructed graph is constantly adjusted by the smoothness term in the objective as the algorithm proceeds. The time complexity of our method gets significant improvement compared with traditional graph-based methods, and the experimental results on one synthetic dataset and several real-world benchmarks demonstrate the effectiveness and scalability of our proposed method.</description><subject>Algorithms</subject><subject>Bipartite graph</subject><subject>Cognitive tasks</subject><subject>Computational modeling</subject><subject>Graph theory</subject><subject>Graph-based semi-supervised learning</subject><subject>Graphs</subject><subject>joint learning</subject><subject>Laplace equations</subject><subject>Machine learning</subject><subject>Propagation</subject><subject>Scalability</subject><subject>Semi-supervised learning</subject><subject>Semisupervised learning</subject><subject>Smoothness</subject><subject>Synthetic data</subject><subject>Task analysis</subject><subject>Vegetation</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFLwzAQx4MoOKcfQHwJ-NyZa5oleZxzTnEosomPIW2vW4a2NUkHfns7Nnw47h5-_zvuR8g1sBEA03erl4fZKGVpOuIgoK8TMgAhVJKChtN-ZhkkGc_kObkIYcsYU1LBgLwv8dsly65Fv3MBS7pA62tXr-nOWXrvWuuji0jn3rYbOm3qEH1XRNfU9NPFDZ2Uto1uh_QV3XqTNz5ckrPKfgW8OvYh-XicraZPyeJt_jydLJKC83FMlMxUnpUCMl6iHotMpkXBhNbIyjETUGqFZS55JaFSFdoUNeOoba6k6EHgQ3J72Nv65qfDEM226XzdnzSp1EL1D3PVU3CgCt-E4LEyrXff1v8aYGZvzuzNmb05czTXZ24OGYeI_7yWwMda8T-CRGm8</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Wang, Zhen</creator><creator>Zhang, Long</creator><creator>Wang, Rong</creator><creator>Nie, Feiping</creator><creator>Li, Xuelong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8182-2852</orcidid><orcidid>https://orcid.org/0000-0001-7380-6388</orcidid><orcidid>https://orcid.org/0000-0002-0871-6519</orcidid><orcidid>https://orcid.org/0000-0001-9240-6726</orcidid><orcidid>https://orcid.org/0000-0003-2924-946X</orcidid></search><sort><creationdate>20230501</creationdate><title>Semi-Supervised Learning via Bipartite Graph Construction With Adaptive Neighbors</title><author>Wang, Zhen ; Zhang, Long ; Wang, Rong ; Nie, Feiping ; Li, Xuelong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-8748b4d5143de965472cc0599e0d6051d98edb73f71f8fea2e903e9ab875cc013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Bipartite graph</topic><topic>Cognitive tasks</topic><topic>Computational modeling</topic><topic>Graph theory</topic><topic>Graph-based semi-supervised learning</topic><topic>Graphs</topic><topic>joint learning</topic><topic>Laplace equations</topic><topic>Machine learning</topic><topic>Propagation</topic><topic>Scalability</topic><topic>Semi-supervised learning</topic><topic>Semisupervised learning</topic><topic>Smoothness</topic><topic>Synthetic data</topic><topic>Task analysis</topic><topic>Vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zhen</creatorcontrib><creatorcontrib>Zhang, Long</creatorcontrib><creatorcontrib>Wang, Rong</creatorcontrib><creatorcontrib>Nie, Feiping</creatorcontrib><creatorcontrib>Li, Xuelong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Zhen</au><au>Zhang, Long</au><au>Wang, Rong</au><au>Nie, Feiping</au><au>Li, Xuelong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semi-Supervised Learning via Bipartite Graph Construction With Adaptive Neighbors</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>35</volume><issue>5</issue><spage>5257</spage><epage>5268</epage><pages>5257-5268</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>Graph-based semi-supervised learning, which further utilizes graph structure behind samples for boosting semi-supervised learning, gains convincing results in several machine learning tasks. Nevertheless, existing graph-based methods have shortcomings from two aspects. On the one hand, many of them concentrate on improving label propagation over the constructed graph through time-saving methods, e.g., path searching, without giving insights on constructing a proper graph accommodated to samples. On the other hand, some models are only devoted to constructing the appropriate graph resulting in a two-stage procedure, which may incur a suboptimal scenario. In this paper, we develop a joint learning method that considers both bipartite graph construction and label propagation simultaneously. With this configuration, the constructed graph is constantly adjusted by the smoothness term in the objective as the algorithm proceeds. The time complexity of our method gets significant improvement compared with traditional graph-based methods, and the experimental results on one synthetic dataset and several real-world benchmarks demonstrate the effectiveness and scalability of our proposed method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TKDE.2022.3151315</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8182-2852</orcidid><orcidid>https://orcid.org/0000-0001-7380-6388</orcidid><orcidid>https://orcid.org/0000-0002-0871-6519</orcidid><orcidid>https://orcid.org/0000-0001-9240-6726</orcidid><orcidid>https://orcid.org/0000-0003-2924-946X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1041-4347
ispartof IEEE transactions on knowledge and data engineering, 2023-05, Vol.35 (5), p.5257-5268
issn 1041-4347
1558-2191
language eng
recordid cdi_ieee_primary_9713698
source IEEE Electronic Library (IEL)
subjects Algorithms
Bipartite graph
Cognitive tasks
Computational modeling
Graph theory
Graph-based semi-supervised learning
Graphs
joint learning
Laplace equations
Machine learning
Propagation
Scalability
Semi-supervised learning
Semisupervised learning
Smoothness
Synthetic data
Task analysis
Vegetation
title Semi-Supervised Learning via Bipartite Graph Construction With Adaptive Neighbors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A12%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semi-Supervised%20Learning%20via%20Bipartite%20Graph%20Construction%20With%20Adaptive%20Neighbors&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Wang,%20Zhen&rft.date=2023-05-01&rft.volume=35&rft.issue=5&rft.spage=5257&rft.epage=5268&rft.pages=5257-5268&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2022.3151315&rft_dat=%3Cproquest_RIE%3E2795804138%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2795804138&rft_id=info:pmid/&rft_ieee_id=9713698&rfr_iscdi=true