Monitoring Platform Evolution Toward Serverless Computing for 5G and Beyond Systems

Fifth generation (5G) and beyond systems require flexible and efficient monitoring platforms to guarantee optimal key performance indicators (KPIs) in various scenarios. Their applicability in Edge computing environments requires lightweight monitoring solutions. This work evaluates different candid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE eTransactions on network and service management 2022-06, Vol.19 (2), p.1489-1504
Hauptverfasser: Perez, Ramon, Benedetti, Priscilla, Pergolesi, Matteo, Garcia-Reinoso, Jaime, Zabala, Aitor, Serrano, Pablo, Femminella, Mauro, Reali, Gianluca, Steenhaut, Kris, Banchs, Albert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1504
container_issue 2
container_start_page 1489
container_title IEEE eTransactions on network and service management
container_volume 19
creator Perez, Ramon
Benedetti, Priscilla
Pergolesi, Matteo
Garcia-Reinoso, Jaime
Zabala, Aitor
Serrano, Pablo
Femminella, Mauro
Reali, Gianluca
Steenhaut, Kris
Banchs, Albert
description Fifth generation (5G) and beyond systems require flexible and efficient monitoring platforms to guarantee optimal key performance indicators (KPIs) in various scenarios. Their applicability in Edge computing environments requires lightweight monitoring solutions. This work evaluates different candidate technologies to implement a monitoring platform for 5G and beyond systems in these environments. For monitoring data plane technologies, we evaluate different virtualization technologies, including bare metal servers, virtual machines, and orchestrated containers. We show that containers not only offer superior flexibility and deployment agility, but also allow obtaining better throughput and latency. In addition, we explore the suitability of the Function-as-a-Service (FaaS) serverless paradigm for deploying the functions used to manage the monitoring platform. This is motivated by the event oriented nature of those functions, designed to set up the monitoring infrastructure for newly created services. When the FaaS warm start mode is used, the platform gives users the perception of resources that are always available. When a cold start mode is used, containers running the application's modules are automatically destroyed when the application is not in use. Our analysis compares both of them with the standard deployment of microservices. The experimental results show that the cold start mode produces a significant latency increase, along with potential instabilities. For this reason, its usage is not recommended despite the potential savings of computing resources. Conversely, when the warm start mode is used for executing configuration tasks of monitoring infrastructure, it can provide similar execution times to a microservice-based deployment. In addition, the FaaS approach significantly simplifies the code logic in comparison with microservices, reducing lines of code to less than 38%, thus reducing development time. Thus, FaaS in warm start mode represents the best candidate technology to implements such management functions.
doi_str_mv 10.1109/TNSM.2022.3150586
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9709528</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9709528</ieee_id><sourcerecordid>2675043479</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-a04ba11ffb021e25aee0ddfc0520014bee65ff67f5310995dc811514507c86163</originalsourceid><addsrcrecordid>eNpNkN9LwzAQx4MoOKd_gPgS8LkzlzT98ahjTmFTofM5ZO1FOtpmJt2k_70ZG-LTHdzne8d9CLkFNgFg-cPqrVhOOON8IkAymSVnZAS54FEsRXr-r78kV95vWEAg5yNSLG1X99bV3Rf9aHRvrGvpbG-bXV_bjq7sj3YVLdDt0TXoPZ3adhtmAQ8olXOqu4o-4WBDKQbfY-uvyYXRjcebUx2Tz-fZavoSLd7nr9PHRVQKkfSRZvFaAxizZhyQS43IqsqUTHLGIF4jJtKYJDVShA9zWZUZgIRYsrTMEkjEmNwf926d_d6h79XG7lwXTiqepJLFIk7zQMGRKp313qFRW1e32g0KmDq4Uwd36uBOndyFzN0xUyPiH5-nLJc8E7_iVGqG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2675043479</pqid></control><display><type>article</type><title>Monitoring Platform Evolution Toward Serverless Computing for 5G and Beyond Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Perez, Ramon ; Benedetti, Priscilla ; Pergolesi, Matteo ; Garcia-Reinoso, Jaime ; Zabala, Aitor ; Serrano, Pablo ; Femminella, Mauro ; Reali, Gianluca ; Steenhaut, Kris ; Banchs, Albert</creator><creatorcontrib>Perez, Ramon ; Benedetti, Priscilla ; Pergolesi, Matteo ; Garcia-Reinoso, Jaime ; Zabala, Aitor ; Serrano, Pablo ; Femminella, Mauro ; Reali, Gianluca ; Steenhaut, Kris ; Banchs, Albert</creatorcontrib><description>Fifth generation (5G) and beyond systems require flexible and efficient monitoring platforms to guarantee optimal key performance indicators (KPIs) in various scenarios. Their applicability in Edge computing environments requires lightweight monitoring solutions. This work evaluates different candidate technologies to implement a monitoring platform for 5G and beyond systems in these environments. For monitoring data plane technologies, we evaluate different virtualization technologies, including bare metal servers, virtual machines, and orchestrated containers. We show that containers not only offer superior flexibility and deployment agility, but also allow obtaining better throughput and latency. In addition, we explore the suitability of the Function-as-a-Service (FaaS) serverless paradigm for deploying the functions used to manage the monitoring platform. This is motivated by the event oriented nature of those functions, designed to set up the monitoring infrastructure for newly created services. When the FaaS warm start mode is used, the platform gives users the perception of resources that are always available. When a cold start mode is used, containers running the application's modules are automatically destroyed when the application is not in use. Our analysis compares both of them with the standard deployment of microservices. The experimental results show that the cold start mode produces a significant latency increase, along with potential instabilities. For this reason, its usage is not recommended despite the potential savings of computing resources. Conversely, when the warm start mode is used for executing configuration tasks of monitoring infrastructure, it can provide similar execution times to a microservice-based deployment. In addition, the FaaS approach significantly simplifies the code logic in comparison with microservices, reducing lines of code to less than 38%, thus reducing development time. Thus, FaaS in warm start mode represents the best candidate technology to implements such management functions.</description><identifier>ISSN: 1932-4537</identifier><identifier>EISSN: 1932-4537</identifier><identifier>DOI: 10.1109/TNSM.2022.3150586</identifier><identifier>CODEN: ITNSC4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>5G mobile communication ; 5G networks ; Cold starts ; Containers ; Edge computing ; FAA ; FaaS ; Infrastructure ; Microservice architectures ; Monitoring ; monitoring and data collection ; performance comparison ; Serverless computing ; Virtual environments ; Virtualization</subject><ispartof>IEEE eTransactions on network and service management, 2022-06, Vol.19 (2), p.1489-1504</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-a04ba11ffb021e25aee0ddfc0520014bee65ff67f5310995dc811514507c86163</citedby><cites>FETCH-LOGICAL-c336t-a04ba11ffb021e25aee0ddfc0520014bee65ff67f5310995dc811514507c86163</cites><orcidid>0000-0003-3544-8537 ; 0000-0002-6695-5956 ; 0000-0001-9626-1608 ; 0000-0003-3450-6141 ; 0000-0002-3029-0681 ; 0000-0002-5901-4218 ; 0000-0002-5176-0013 ; 0000-0002-7475-2841 ; 0000-0002-8567-5917</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9709528$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9709528$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Perez, Ramon</creatorcontrib><creatorcontrib>Benedetti, Priscilla</creatorcontrib><creatorcontrib>Pergolesi, Matteo</creatorcontrib><creatorcontrib>Garcia-Reinoso, Jaime</creatorcontrib><creatorcontrib>Zabala, Aitor</creatorcontrib><creatorcontrib>Serrano, Pablo</creatorcontrib><creatorcontrib>Femminella, Mauro</creatorcontrib><creatorcontrib>Reali, Gianluca</creatorcontrib><creatorcontrib>Steenhaut, Kris</creatorcontrib><creatorcontrib>Banchs, Albert</creatorcontrib><title>Monitoring Platform Evolution Toward Serverless Computing for 5G and Beyond Systems</title><title>IEEE eTransactions on network and service management</title><addtitle>T-NSM</addtitle><description>Fifth generation (5G) and beyond systems require flexible and efficient monitoring platforms to guarantee optimal key performance indicators (KPIs) in various scenarios. Their applicability in Edge computing environments requires lightweight monitoring solutions. This work evaluates different candidate technologies to implement a monitoring platform for 5G and beyond systems in these environments. For monitoring data plane technologies, we evaluate different virtualization technologies, including bare metal servers, virtual machines, and orchestrated containers. We show that containers not only offer superior flexibility and deployment agility, but also allow obtaining better throughput and latency. In addition, we explore the suitability of the Function-as-a-Service (FaaS) serverless paradigm for deploying the functions used to manage the monitoring platform. This is motivated by the event oriented nature of those functions, designed to set up the monitoring infrastructure for newly created services. When the FaaS warm start mode is used, the platform gives users the perception of resources that are always available. When a cold start mode is used, containers running the application's modules are automatically destroyed when the application is not in use. Our analysis compares both of them with the standard deployment of microservices. The experimental results show that the cold start mode produces a significant latency increase, along with potential instabilities. For this reason, its usage is not recommended despite the potential savings of computing resources. Conversely, when the warm start mode is used for executing configuration tasks of monitoring infrastructure, it can provide similar execution times to a microservice-based deployment. In addition, the FaaS approach significantly simplifies the code logic in comparison with microservices, reducing lines of code to less than 38%, thus reducing development time. Thus, FaaS in warm start mode represents the best candidate technology to implements such management functions.</description><subject>5G mobile communication</subject><subject>5G networks</subject><subject>Cold starts</subject><subject>Containers</subject><subject>Edge computing</subject><subject>FAA</subject><subject>FaaS</subject><subject>Infrastructure</subject><subject>Microservice architectures</subject><subject>Monitoring</subject><subject>monitoring and data collection</subject><subject>performance comparison</subject><subject>Serverless computing</subject><subject>Virtual environments</subject><subject>Virtualization</subject><issn>1932-4537</issn><issn>1932-4537</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkN9LwzAQx4MoOKd_gPgS8LkzlzT98ahjTmFTofM5ZO1FOtpmJt2k_70ZG-LTHdzne8d9CLkFNgFg-cPqrVhOOON8IkAymSVnZAS54FEsRXr-r78kV95vWEAg5yNSLG1X99bV3Rf9aHRvrGvpbG-bXV_bjq7sj3YVLdDt0TXoPZ3adhtmAQ8olXOqu4o-4WBDKQbfY-uvyYXRjcebUx2Tz-fZavoSLd7nr9PHRVQKkfSRZvFaAxizZhyQS43IqsqUTHLGIF4jJtKYJDVShA9zWZUZgIRYsrTMEkjEmNwf926d_d6h79XG7lwXTiqepJLFIk7zQMGRKp313qFRW1e32g0KmDq4Uwd36uBOndyFzN0xUyPiH5-nLJc8E7_iVGqG</recordid><startdate>202206</startdate><enddate>202206</enddate><creator>Perez, Ramon</creator><creator>Benedetti, Priscilla</creator><creator>Pergolesi, Matteo</creator><creator>Garcia-Reinoso, Jaime</creator><creator>Zabala, Aitor</creator><creator>Serrano, Pablo</creator><creator>Femminella, Mauro</creator><creator>Reali, Gianluca</creator><creator>Steenhaut, Kris</creator><creator>Banchs, Albert</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3544-8537</orcidid><orcidid>https://orcid.org/0000-0002-6695-5956</orcidid><orcidid>https://orcid.org/0000-0001-9626-1608</orcidid><orcidid>https://orcid.org/0000-0003-3450-6141</orcidid><orcidid>https://orcid.org/0000-0002-3029-0681</orcidid><orcidid>https://orcid.org/0000-0002-5901-4218</orcidid><orcidid>https://orcid.org/0000-0002-5176-0013</orcidid><orcidid>https://orcid.org/0000-0002-7475-2841</orcidid><orcidid>https://orcid.org/0000-0002-8567-5917</orcidid></search><sort><creationdate>202206</creationdate><title>Monitoring Platform Evolution Toward Serverless Computing for 5G and Beyond Systems</title><author>Perez, Ramon ; Benedetti, Priscilla ; Pergolesi, Matteo ; Garcia-Reinoso, Jaime ; Zabala, Aitor ; Serrano, Pablo ; Femminella, Mauro ; Reali, Gianluca ; Steenhaut, Kris ; Banchs, Albert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-a04ba11ffb021e25aee0ddfc0520014bee65ff67f5310995dc811514507c86163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>5G mobile communication</topic><topic>5G networks</topic><topic>Cold starts</topic><topic>Containers</topic><topic>Edge computing</topic><topic>FAA</topic><topic>FaaS</topic><topic>Infrastructure</topic><topic>Microservice architectures</topic><topic>Monitoring</topic><topic>monitoring and data collection</topic><topic>performance comparison</topic><topic>Serverless computing</topic><topic>Virtual environments</topic><topic>Virtualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perez, Ramon</creatorcontrib><creatorcontrib>Benedetti, Priscilla</creatorcontrib><creatorcontrib>Pergolesi, Matteo</creatorcontrib><creatorcontrib>Garcia-Reinoso, Jaime</creatorcontrib><creatorcontrib>Zabala, Aitor</creatorcontrib><creatorcontrib>Serrano, Pablo</creatorcontrib><creatorcontrib>Femminella, Mauro</creatorcontrib><creatorcontrib>Reali, Gianluca</creatorcontrib><creatorcontrib>Steenhaut, Kris</creatorcontrib><creatorcontrib>Banchs, Albert</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE eTransactions on network and service management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Perez, Ramon</au><au>Benedetti, Priscilla</au><au>Pergolesi, Matteo</au><au>Garcia-Reinoso, Jaime</au><au>Zabala, Aitor</au><au>Serrano, Pablo</au><au>Femminella, Mauro</au><au>Reali, Gianluca</au><au>Steenhaut, Kris</au><au>Banchs, Albert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monitoring Platform Evolution Toward Serverless Computing for 5G and Beyond Systems</atitle><jtitle>IEEE eTransactions on network and service management</jtitle><stitle>T-NSM</stitle><date>2022-06</date><risdate>2022</risdate><volume>19</volume><issue>2</issue><spage>1489</spage><epage>1504</epage><pages>1489-1504</pages><issn>1932-4537</issn><eissn>1932-4537</eissn><coden>ITNSC4</coden><abstract>Fifth generation (5G) and beyond systems require flexible and efficient monitoring platforms to guarantee optimal key performance indicators (KPIs) in various scenarios. Their applicability in Edge computing environments requires lightweight monitoring solutions. This work evaluates different candidate technologies to implement a monitoring platform for 5G and beyond systems in these environments. For monitoring data plane technologies, we evaluate different virtualization technologies, including bare metal servers, virtual machines, and orchestrated containers. We show that containers not only offer superior flexibility and deployment agility, but also allow obtaining better throughput and latency. In addition, we explore the suitability of the Function-as-a-Service (FaaS) serverless paradigm for deploying the functions used to manage the monitoring platform. This is motivated by the event oriented nature of those functions, designed to set up the monitoring infrastructure for newly created services. When the FaaS warm start mode is used, the platform gives users the perception of resources that are always available. When a cold start mode is used, containers running the application's modules are automatically destroyed when the application is not in use. Our analysis compares both of them with the standard deployment of microservices. The experimental results show that the cold start mode produces a significant latency increase, along with potential instabilities. For this reason, its usage is not recommended despite the potential savings of computing resources. Conversely, when the warm start mode is used for executing configuration tasks of monitoring infrastructure, it can provide similar execution times to a microservice-based deployment. In addition, the FaaS approach significantly simplifies the code logic in comparison with microservices, reducing lines of code to less than 38%, thus reducing development time. Thus, FaaS in warm start mode represents the best candidate technology to implements such management functions.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNSM.2022.3150586</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-3544-8537</orcidid><orcidid>https://orcid.org/0000-0002-6695-5956</orcidid><orcidid>https://orcid.org/0000-0001-9626-1608</orcidid><orcidid>https://orcid.org/0000-0003-3450-6141</orcidid><orcidid>https://orcid.org/0000-0002-3029-0681</orcidid><orcidid>https://orcid.org/0000-0002-5901-4218</orcidid><orcidid>https://orcid.org/0000-0002-5176-0013</orcidid><orcidid>https://orcid.org/0000-0002-7475-2841</orcidid><orcidid>https://orcid.org/0000-0002-8567-5917</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1932-4537
ispartof IEEE eTransactions on network and service management, 2022-06, Vol.19 (2), p.1489-1504
issn 1932-4537
1932-4537
language eng
recordid cdi_ieee_primary_9709528
source IEEE Electronic Library (IEL)
subjects 5G mobile communication
5G networks
Cold starts
Containers
Edge computing
FAA
FaaS
Infrastructure
Microservice architectures
Monitoring
monitoring and data collection
performance comparison
Serverless computing
Virtual environments
Virtualization
title Monitoring Platform Evolution Toward Serverless Computing for 5G and Beyond Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T08%3A24%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monitoring%20Platform%20Evolution%20Toward%20Serverless%20Computing%20for%205G%20and%20Beyond%20Systems&rft.jtitle=IEEE%20eTransactions%20on%20network%20and%20service%20management&rft.au=Perez,%20Ramon&rft.date=2022-06&rft.volume=19&rft.issue=2&rft.spage=1489&rft.epage=1504&rft.pages=1489-1504&rft.issn=1932-4537&rft.eissn=1932-4537&rft.coden=ITNSC4&rft_id=info:doi/10.1109/TNSM.2022.3150586&rft_dat=%3Cproquest_RIE%3E2675043479%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2675043479&rft_id=info:pmid/&rft_ieee_id=9709528&rfr_iscdi=true