On the performance of a relay assisted hybrid RF-NLOS UVC system with imperfect channel estimation
Non-line-of-sight (NLOS) ultraviolet communication (UVC) is emerging as an attractive optical wireless communication technology that enables wireless connectivity in radio-frequency (RF) prohibited areas with no LOS availability. NLOS UVC, however, suffers from a very high path loss, thereby restric...
Gespeichert in:
Veröffentlicht in: | Journal of optical communications and networking 2022-04, Vol.14 (4), p.177-189 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 189 |
---|---|
container_issue | 4 |
container_start_page | 177 |
container_title | Journal of optical communications and networking |
container_volume | 14 |
creator | Garg, Kamal K. Shaik, Parvez Bhatia, Vimal Krejcar, Ondrej |
description | Non-line-of-sight (NLOS) ultraviolet communication (UVC) is emerging as an attractive optical wireless communication technology that enables wireless connectivity in radio-frequency (RF) prohibited areas with no LOS availability. NLOS UVC, however, suffers from a very high path loss, thereby restricting its usage to smaller link distances. In this paper, we address the challenge of providing long-distance wireless connectivity to RF prohibited areas by mixing NLOS UVC with RF communication using a decode-and-forward relay. The RF link is modeled using Rayleigh distribution, and the NLOS UV link is modeled using lognormal distribution under weak turbulence conditions. A framework for analytical expressions of the outage probability and probability density function (PDF) of the end-to-end signal-to-noise ratio is presented by considering the practical scenario of imperfect channel state information (CSI) at the receiver. Subsequently, a PDF based novel closed-form analytical expression of the average symbol error rate is deduced for spectrally efficient higher-order modulation schemes, including rectangular quadrature modulation (RQAM), square QAM (SQAM), cross-QAM (XQAM), and hexagonal QAM (HQAM). Numerical investigations are conducted, and the impact of CSI imperfections on the system performance is evaluated. It is shown that the RF link is more vulnerable to channel estimation error (CEE) than the NLOS UV link. Further, it is illustrated that for constellation sizes greater than four, HQAM always performs better than the RQAM, SQAM, and XQAM schemes, irrespective of the amount of CEE present. Furthermore, it is shown that an elevation angle of 70° or less in the NLOS UVC link results in better outage performance. Correctness of the derived analytical expressions is supported through extensive Monte Carlo simulations |
doi_str_mv | 10.1364/JOCN.440819 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9709161</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9709161</ieee_id><sourcerecordid>2626973133</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-d638a88f35b3e1a756ee0ec66934600a0d157b108bc94dbb5b58901c0559053e3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFZPHr0seJTU2Wx2kz1KsH5QGlDrNexuJiSlSepuiuTfmxLpaQbm4X2Hh5BbBgvGZfT4nqXrRRRBwtQZmTEV8QAkV-enPYRLcuX9FkDGjIkZMVlL-wrpHl3ZuUa3FmlXUk0d7vRAtfe177Gg1WBcXdCPZbBeZZ90851SP4yXhv7WfUXr5hiAtqe20m2LO4q-rxvd1117TS5KvfN48z_nZLN8_kpfg1X28pY-rQIbJqwPCskTnSQlF4Yj07GQiIBWSsUjCaChYCI2DBJjVVQYI4xIFDALQigQHPmc3E-5e9f9HMb-fNsdXDtW5qEMpYo543ykHibKus57h2W-d-OjbsgZ5EeJ-VFiPkkc6buJrhHxRKoYFJOM_wGM0GwY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2626973133</pqid></control><display><type>article</type><title>On the performance of a relay assisted hybrid RF-NLOS UVC system with imperfect channel estimation</title><source>IEEE Electronic Library (IEL)</source><creator>Garg, Kamal K. ; Shaik, Parvez ; Bhatia, Vimal ; Krejcar, Ondrej</creator><creatorcontrib>Garg, Kamal K. ; Shaik, Parvez ; Bhatia, Vimal ; Krejcar, Ondrej</creatorcontrib><description>Non-line-of-sight (NLOS) ultraviolet communication (UVC) is emerging as an attractive optical wireless communication technology that enables wireless connectivity in radio-frequency (RF) prohibited areas with no LOS availability. NLOS UVC, however, suffers from a very high path loss, thereby restricting its usage to smaller link distances. In this paper, we address the challenge of providing long-distance wireless connectivity to RF prohibited areas by mixing NLOS UVC with RF communication using a decode-and-forward relay. The RF link is modeled using Rayleigh distribution, and the NLOS UV link is modeled using lognormal distribution under weak turbulence conditions. A framework for analytical expressions of the outage probability and probability density function (PDF) of the end-to-end signal-to-noise ratio is presented by considering the practical scenario of imperfect channel state information (CSI) at the receiver. Subsequently, a PDF based novel closed-form analytical expression of the average symbol error rate is deduced for spectrally efficient higher-order modulation schemes, including rectangular quadrature modulation (RQAM), square QAM (SQAM), cross-QAM (XQAM), and hexagonal QAM (HQAM). Numerical investigations are conducted, and the impact of CSI imperfections on the system performance is evaluated. It is shown that the RF link is more vulnerable to channel estimation error (CEE) than the NLOS UV link. Further, it is illustrated that for constellation sizes greater than four, HQAM always performs better than the RQAM, SQAM, and XQAM schemes, irrespective of the amount of CEE present. Furthermore, it is shown that an elevation angle of 70° or less in the NLOS UVC link results in better outage performance. Correctness of the derived analytical expressions is supported through extensive Monte Carlo simulations</description><identifier>ISSN: 1943-0620</identifier><identifier>EISSN: 1943-0639</identifier><identifier>DOI: 10.1364/JOCN.440819</identifier><identifier>CODEN: JOCNBB</identifier><language>eng</language><publisher>Piscataway: Optica Publishing Group</publisher><subject>Communication ; Elevation angle ; Exact solutions ; Hybrid systems ; Line of sight communication ; Mathematical analysis ; Nonlinear optics ; Outages ; Performance evaluation ; Power system reliability ; Probability ; Probability density function ; Probability density functions ; Quadrature amplitude modulation ; Radio frequency ; Rayleigh distribution ; Relay ; Signal to noise ratio ; Wireless communication ; Wireless communications</subject><ispartof>Journal of optical communications and networking, 2022-04, Vol.14 (4), p.177-189</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-d638a88f35b3e1a756ee0ec66934600a0d157b108bc94dbb5b58901c0559053e3</citedby><cites>FETCH-LOGICAL-c281t-d638a88f35b3e1a756ee0ec66934600a0d157b108bc94dbb5b58901c0559053e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9709161$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27913,27914,54747</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9709161$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Garg, Kamal K.</creatorcontrib><creatorcontrib>Shaik, Parvez</creatorcontrib><creatorcontrib>Bhatia, Vimal</creatorcontrib><creatorcontrib>Krejcar, Ondrej</creatorcontrib><title>On the performance of a relay assisted hybrid RF-NLOS UVC system with imperfect channel estimation</title><title>Journal of optical communications and networking</title><addtitle>jocn</addtitle><description>Non-line-of-sight (NLOS) ultraviolet communication (UVC) is emerging as an attractive optical wireless communication technology that enables wireless connectivity in radio-frequency (RF) prohibited areas with no LOS availability. NLOS UVC, however, suffers from a very high path loss, thereby restricting its usage to smaller link distances. In this paper, we address the challenge of providing long-distance wireless connectivity to RF prohibited areas by mixing NLOS UVC with RF communication using a decode-and-forward relay. The RF link is modeled using Rayleigh distribution, and the NLOS UV link is modeled using lognormal distribution under weak turbulence conditions. A framework for analytical expressions of the outage probability and probability density function (PDF) of the end-to-end signal-to-noise ratio is presented by considering the practical scenario of imperfect channel state information (CSI) at the receiver. Subsequently, a PDF based novel closed-form analytical expression of the average symbol error rate is deduced for spectrally efficient higher-order modulation schemes, including rectangular quadrature modulation (RQAM), square QAM (SQAM), cross-QAM (XQAM), and hexagonal QAM (HQAM). Numerical investigations are conducted, and the impact of CSI imperfections on the system performance is evaluated. It is shown that the RF link is more vulnerable to channel estimation error (CEE) than the NLOS UV link. Further, it is illustrated that for constellation sizes greater than four, HQAM always performs better than the RQAM, SQAM, and XQAM schemes, irrespective of the amount of CEE present. Furthermore, it is shown that an elevation angle of 70° or less in the NLOS UVC link results in better outage performance. Correctness of the derived analytical expressions is supported through extensive Monte Carlo simulations</description><subject>Communication</subject><subject>Elevation angle</subject><subject>Exact solutions</subject><subject>Hybrid systems</subject><subject>Line of sight communication</subject><subject>Mathematical analysis</subject><subject>Nonlinear optics</subject><subject>Outages</subject><subject>Performance evaluation</subject><subject>Power system reliability</subject><subject>Probability</subject><subject>Probability density function</subject><subject>Probability density functions</subject><subject>Quadrature amplitude modulation</subject><subject>Radio frequency</subject><subject>Rayleigh distribution</subject><subject>Relay</subject><subject>Signal to noise ratio</subject><subject>Wireless communication</subject><subject>Wireless communications</subject><issn>1943-0620</issn><issn>1943-0639</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFZPHr0seJTU2Wx2kz1KsH5QGlDrNexuJiSlSepuiuTfmxLpaQbm4X2Hh5BbBgvGZfT4nqXrRRRBwtQZmTEV8QAkV-enPYRLcuX9FkDGjIkZMVlL-wrpHl3ZuUa3FmlXUk0d7vRAtfe177Gg1WBcXdCPZbBeZZ90851SP4yXhv7WfUXr5hiAtqe20m2LO4q-rxvd1117TS5KvfN48z_nZLN8_kpfg1X28pY-rQIbJqwPCskTnSQlF4Yj07GQiIBWSsUjCaChYCI2DBJjVVQYI4xIFDALQigQHPmc3E-5e9f9HMb-fNsdXDtW5qEMpYo543ykHibKus57h2W-d-OjbsgZ5EeJ-VFiPkkc6buJrhHxRKoYFJOM_wGM0GwY</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Garg, Kamal K.</creator><creator>Shaik, Parvez</creator><creator>Bhatia, Vimal</creator><creator>Krejcar, Ondrej</creator><general>Optica Publishing Group</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20220401</creationdate><title>On the performance of a relay assisted hybrid RF-NLOS UVC system with imperfect channel estimation</title><author>Garg, Kamal K. ; Shaik, Parvez ; Bhatia, Vimal ; Krejcar, Ondrej</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-d638a88f35b3e1a756ee0ec66934600a0d157b108bc94dbb5b58901c0559053e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Communication</topic><topic>Elevation angle</topic><topic>Exact solutions</topic><topic>Hybrid systems</topic><topic>Line of sight communication</topic><topic>Mathematical analysis</topic><topic>Nonlinear optics</topic><topic>Outages</topic><topic>Performance evaluation</topic><topic>Power system reliability</topic><topic>Probability</topic><topic>Probability density function</topic><topic>Probability density functions</topic><topic>Quadrature amplitude modulation</topic><topic>Radio frequency</topic><topic>Rayleigh distribution</topic><topic>Relay</topic><topic>Signal to noise ratio</topic><topic>Wireless communication</topic><topic>Wireless communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garg, Kamal K.</creatorcontrib><creatorcontrib>Shaik, Parvez</creatorcontrib><creatorcontrib>Bhatia, Vimal</creatorcontrib><creatorcontrib>Krejcar, Ondrej</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of optical communications and networking</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Garg, Kamal K.</au><au>Shaik, Parvez</au><au>Bhatia, Vimal</au><au>Krejcar, Ondrej</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the performance of a relay assisted hybrid RF-NLOS UVC system with imperfect channel estimation</atitle><jtitle>Journal of optical communications and networking</jtitle><stitle>jocn</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>14</volume><issue>4</issue><spage>177</spage><epage>189</epage><pages>177-189</pages><issn>1943-0620</issn><eissn>1943-0639</eissn><coden>JOCNBB</coden><abstract>Non-line-of-sight (NLOS) ultraviolet communication (UVC) is emerging as an attractive optical wireless communication technology that enables wireless connectivity in radio-frequency (RF) prohibited areas with no LOS availability. NLOS UVC, however, suffers from a very high path loss, thereby restricting its usage to smaller link distances. In this paper, we address the challenge of providing long-distance wireless connectivity to RF prohibited areas by mixing NLOS UVC with RF communication using a decode-and-forward relay. The RF link is modeled using Rayleigh distribution, and the NLOS UV link is modeled using lognormal distribution under weak turbulence conditions. A framework for analytical expressions of the outage probability and probability density function (PDF) of the end-to-end signal-to-noise ratio is presented by considering the practical scenario of imperfect channel state information (CSI) at the receiver. Subsequently, a PDF based novel closed-form analytical expression of the average symbol error rate is deduced for spectrally efficient higher-order modulation schemes, including rectangular quadrature modulation (RQAM), square QAM (SQAM), cross-QAM (XQAM), and hexagonal QAM (HQAM). Numerical investigations are conducted, and the impact of CSI imperfections on the system performance is evaluated. It is shown that the RF link is more vulnerable to channel estimation error (CEE) than the NLOS UV link. Further, it is illustrated that for constellation sizes greater than four, HQAM always performs better than the RQAM, SQAM, and XQAM schemes, irrespective of the amount of CEE present. Furthermore, it is shown that an elevation angle of 70° or less in the NLOS UVC link results in better outage performance. Correctness of the derived analytical expressions is supported through extensive Monte Carlo simulations</abstract><cop>Piscataway</cop><pub>Optica Publishing Group</pub><doi>10.1364/JOCN.440819</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1943-0620 |
ispartof | Journal of optical communications and networking, 2022-04, Vol.14 (4), p.177-189 |
issn | 1943-0620 1943-0639 |
language | eng |
recordid | cdi_ieee_primary_9709161 |
source | IEEE Electronic Library (IEL) |
subjects | Communication Elevation angle Exact solutions Hybrid systems Line of sight communication Mathematical analysis Nonlinear optics Outages Performance evaluation Power system reliability Probability Probability density function Probability density functions Quadrature amplitude modulation Radio frequency Rayleigh distribution Relay Signal to noise ratio Wireless communication Wireless communications |
title | On the performance of a relay assisted hybrid RF-NLOS UVC system with imperfect channel estimation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T09%3A20%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20performance%20of%20a%20relay%20assisted%20hybrid%20RF-NLOS%20UVC%20system%20with%20imperfect%20channel%20estimation&rft.jtitle=Journal%20of%20optical%20communications%20and%20networking&rft.au=Garg,%20Kamal%20K.&rft.date=2022-04-01&rft.volume=14&rft.issue=4&rft.spage=177&rft.epage=189&rft.pages=177-189&rft.issn=1943-0620&rft.eissn=1943-0639&rft.coden=JOCNBB&rft_id=info:doi/10.1364/JOCN.440819&rft_dat=%3Cproquest_RIE%3E2626973133%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2626973133&rft_id=info:pmid/&rft_ieee_id=9709161&rfr_iscdi=true |