Time-Critical Data Dissemination Under Flash Crowd Traffic

How to rapidly disseminate a large-sized file to many recipients in flash crowd arrival patterns is a fundamental challenge in many applications, such as distributing multimedia content. To tackle this challenge, we present the Bee, which is a time-critical peer-to-peer data dissemination system aim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE open journal of the Computer Society 2022, Vol.3, p.11-22
Hauptverfasser: Wu, Chi-Jen, Ho, Jan-Ming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 22
container_issue
container_start_page 11
container_title IEEE open journal of the Computer Society
container_volume 3
creator Wu, Chi-Jen
Ho, Jan-Ming
description How to rapidly disseminate a large-sized file to many recipients in flash crowd arrival patterns is a fundamental challenge in many applications, such as distributing multimedia content. To tackle this challenge, we present the Bee, which is a time-critical peer-to-peer data dissemination system aiming at minimizing the maximum dissemination time for all peers to obtain the complete file in flash crowd arrival patterns. Bee is a decentralized system that organizes peers into a randomized mesh-based overlay, and each peer only works with local knowledge. We introduce the slowest peer first strategy to boost the speed of dissemination and present a topology adaptation algorithm that adapts the number of connections based on upload bandwidth capacity of a peer. Bee is designed to support network heterogeneity and deals with the flash crowd arrival pattern without sacrificing the dissemination speed. We also show the lower bound analysis of the data dissemination problem, and present the experimental results to demonstrate that the performance of Bee can roughly approximate the lower bound of the data dissemination problem under flash crowd traffic.
doi_str_mv 10.1109/OJCS.2022.3149411
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9707877</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9707877</ieee_id><doaj_id>oai_doaj_org_article_da9454a846ca40f385309edcc2cd8564</doaj_id><sourcerecordid>2633051406</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-d1467db83ed4aded19ef3e1ec90cc4bbac561100aa84c5a4a7986969f5d981283</originalsourceid><addsrcrecordid>eNpNkE9PAjEQxTdGEwnyAYyXTTwvdvpvW29mEcWQcBDOzdB2tQRYbJcYv72LEOJpJpM3v3nzsuwWyBCA6IfZW_U-pITSIQOuOcBF1qOS8wKoVJf_-utskNKKEEIFADDRyx7nYeOLKoY2WFznI2wxH4WU_CZssQ3NNl9snY_5eI3pM69i8-3yecS6DvYmu6pxnfzgVPvZYvw8r16L6exlUj1NC8sEbwsHXJZuqZh3HJ13oH3NPHiribV8uUQrZPcFQVTcCuRYaiW11LVwWgFVrJ9NjlzX4MrsYthg_DENBvM3aOKHwdjZX3vjUHPBO5C0yEnNlGBEe2cttU4JyTvW_ZG1i83X3qfWrJp93Hb2DZWMEQGcyE4FR5WNTUrR1-erQMwhcXNI3BwSN6fEu527407w3p_1uiSlKkv2CyWHenY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2633051406</pqid></control><display><type>article</type><title>Time-Critical Data Dissemination Under Flash Crowd Traffic</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Wu, Chi-Jen ; Ho, Jan-Ming</creator><creatorcontrib>Wu, Chi-Jen ; Ho, Jan-Ming</creatorcontrib><description>How to rapidly disseminate a large-sized file to many recipients in flash crowd arrival patterns is a fundamental challenge in many applications, such as distributing multimedia content. To tackle this challenge, we present the Bee, which is a time-critical peer-to-peer data dissemination system aiming at minimizing the maximum dissemination time for all peers to obtain the complete file in flash crowd arrival patterns. Bee is a decentralized system that organizes peers into a randomized mesh-based overlay, and each peer only works with local knowledge. We introduce the slowest peer first strategy to boost the speed of dissemination and present a topology adaptation algorithm that adapts the number of connections based on upload bandwidth capacity of a peer. Bee is designed to support network heterogeneity and deals with the flash crowd arrival pattern without sacrificing the dissemination speed. We also show the lower bound analysis of the data dissemination problem, and present the experimental results to demonstrate that the performance of Bee can roughly approximate the lower bound of the data dissemination problem under flash crowd traffic.</description><identifier>ISSN: 2644-1268</identifier><identifier>EISSN: 2644-1268</identifier><identifier>DOI: 10.1109/OJCS.2022.3149411</identifier><identifier>CODEN: IOJCB2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Approximation algorithms ; Bandwidth ; content distribution ; Data dissemination ; flash crowd ; Heterogeneity ; Lower bounds ; Multimedia ; Peer-to-peer ; Peer-to-peer computing ; Peers ; Topology ; Uplink</subject><ispartof>IEEE open journal of the Computer Society, 2022, Vol.3, p.11-22</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c354t-d1467db83ed4aded19ef3e1ec90cc4bbac561100aa84c5a4a7986969f5d981283</cites><orcidid>0000-0002-6468-0952 ; 0000-0002-2432-8233</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9707877$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Wu, Chi-Jen</creatorcontrib><creatorcontrib>Ho, Jan-Ming</creatorcontrib><title>Time-Critical Data Dissemination Under Flash Crowd Traffic</title><title>IEEE open journal of the Computer Society</title><addtitle>OJCS</addtitle><description>How to rapidly disseminate a large-sized file to many recipients in flash crowd arrival patterns is a fundamental challenge in many applications, such as distributing multimedia content. To tackle this challenge, we present the Bee, which is a time-critical peer-to-peer data dissemination system aiming at minimizing the maximum dissemination time for all peers to obtain the complete file in flash crowd arrival patterns. Bee is a decentralized system that organizes peers into a randomized mesh-based overlay, and each peer only works with local knowledge. We introduce the slowest peer first strategy to boost the speed of dissemination and present a topology adaptation algorithm that adapts the number of connections based on upload bandwidth capacity of a peer. Bee is designed to support network heterogeneity and deals with the flash crowd arrival pattern without sacrificing the dissemination speed. We also show the lower bound analysis of the data dissemination problem, and present the experimental results to demonstrate that the performance of Bee can roughly approximate the lower bound of the data dissemination problem under flash crowd traffic.</description><subject>Algorithms</subject><subject>Approximation algorithms</subject><subject>Bandwidth</subject><subject>content distribution</subject><subject>Data dissemination</subject><subject>flash crowd</subject><subject>Heterogeneity</subject><subject>Lower bounds</subject><subject>Multimedia</subject><subject>Peer-to-peer</subject><subject>Peer-to-peer computing</subject><subject>Peers</subject><subject>Topology</subject><subject>Uplink</subject><issn>2644-1268</issn><issn>2644-1268</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkE9PAjEQxTdGEwnyAYyXTTwvdvpvW29mEcWQcBDOzdB2tQRYbJcYv72LEOJpJpM3v3nzsuwWyBCA6IfZW_U-pITSIQOuOcBF1qOS8wKoVJf_-utskNKKEEIFADDRyx7nYeOLKoY2WFznI2wxH4WU_CZssQ3NNl9snY_5eI3pM69i8-3yecS6DvYmu6pxnfzgVPvZYvw8r16L6exlUj1NC8sEbwsHXJZuqZh3HJ13oH3NPHiribV8uUQrZPcFQVTcCuRYaiW11LVwWgFVrJ9NjlzX4MrsYthg_DENBvM3aOKHwdjZX3vjUHPBO5C0yEnNlGBEe2cttU4JyTvW_ZG1i83X3qfWrJp93Hb2DZWMEQGcyE4FR5WNTUrR1-erQMwhcXNI3BwSN6fEu527407w3p_1uiSlKkv2CyWHenY</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Wu, Chi-Jen</creator><creator>Ho, Jan-Ming</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6468-0952</orcidid><orcidid>https://orcid.org/0000-0002-2432-8233</orcidid></search><sort><creationdate>2022</creationdate><title>Time-Critical Data Dissemination Under Flash Crowd Traffic</title><author>Wu, Chi-Jen ; Ho, Jan-Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-d1467db83ed4aded19ef3e1ec90cc4bbac561100aa84c5a4a7986969f5d981283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Approximation algorithms</topic><topic>Bandwidth</topic><topic>content distribution</topic><topic>Data dissemination</topic><topic>flash crowd</topic><topic>Heterogeneity</topic><topic>Lower bounds</topic><topic>Multimedia</topic><topic>Peer-to-peer</topic><topic>Peer-to-peer computing</topic><topic>Peers</topic><topic>Topology</topic><topic>Uplink</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Chi-Jen</creatorcontrib><creatorcontrib>Ho, Jan-Ming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE open journal of the Computer Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Chi-Jen</au><au>Ho, Jan-Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time-Critical Data Dissemination Under Flash Crowd Traffic</atitle><jtitle>IEEE open journal of the Computer Society</jtitle><stitle>OJCS</stitle><date>2022</date><risdate>2022</risdate><volume>3</volume><spage>11</spage><epage>22</epage><pages>11-22</pages><issn>2644-1268</issn><eissn>2644-1268</eissn><coden>IOJCB2</coden><abstract>How to rapidly disseminate a large-sized file to many recipients in flash crowd arrival patterns is a fundamental challenge in many applications, such as distributing multimedia content. To tackle this challenge, we present the Bee, which is a time-critical peer-to-peer data dissemination system aiming at minimizing the maximum dissemination time for all peers to obtain the complete file in flash crowd arrival patterns. Bee is a decentralized system that organizes peers into a randomized mesh-based overlay, and each peer only works with local knowledge. We introduce the slowest peer first strategy to boost the speed of dissemination and present a topology adaptation algorithm that adapts the number of connections based on upload bandwidth capacity of a peer. Bee is designed to support network heterogeneity and deals with the flash crowd arrival pattern without sacrificing the dissemination speed. We also show the lower bound analysis of the data dissemination problem, and present the experimental results to demonstrate that the performance of Bee can roughly approximate the lower bound of the data dissemination problem under flash crowd traffic.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/OJCS.2022.3149411</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6468-0952</orcidid><orcidid>https://orcid.org/0000-0002-2432-8233</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2644-1268
ispartof IEEE open journal of the Computer Society, 2022, Vol.3, p.11-22
issn 2644-1268
2644-1268
language eng
recordid cdi_ieee_primary_9707877
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Approximation algorithms
Bandwidth
content distribution
Data dissemination
flash crowd
Heterogeneity
Lower bounds
Multimedia
Peer-to-peer
Peer-to-peer computing
Peers
Topology
Uplink
title Time-Critical Data Dissemination Under Flash Crowd Traffic
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T02%3A23%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time-Critical%20Data%20Dissemination%20Under%20Flash%20Crowd%20Traffic&rft.jtitle=IEEE%20open%20journal%20of%20the%20Computer%20Society&rft.au=Wu,%20Chi-Jen&rft.date=2022&rft.volume=3&rft.spage=11&rft.epage=22&rft.pages=11-22&rft.issn=2644-1268&rft.eissn=2644-1268&rft.coden=IOJCB2&rft_id=info:doi/10.1109/OJCS.2022.3149411&rft_dat=%3Cproquest_ieee_%3E2633051406%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2633051406&rft_id=info:pmid/&rft_ieee_id=9707877&rft_doaj_id=oai_doaj_org_article_da9454a846ca40f385309edcc2cd8564&rfr_iscdi=true