Time-Critical Data Dissemination Under Flash Crowd Traffic
How to rapidly disseminate a large-sized file to many recipients in flash crowd arrival patterns is a fundamental challenge in many applications, such as distributing multimedia content. To tackle this challenge, we present the Bee, which is a time-critical peer-to-peer data dissemination system aim...
Gespeichert in:
Veröffentlicht in: | IEEE open journal of the Computer Society 2022, Vol.3, p.11-22 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 22 |
---|---|
container_issue | |
container_start_page | 11 |
container_title | IEEE open journal of the Computer Society |
container_volume | 3 |
creator | Wu, Chi-Jen Ho, Jan-Ming |
description | How to rapidly disseminate a large-sized file to many recipients in flash crowd arrival patterns is a fundamental challenge in many applications, such as distributing multimedia content. To tackle this challenge, we present the Bee, which is a time-critical peer-to-peer data dissemination system aiming at minimizing the maximum dissemination time for all peers to obtain the complete file in flash crowd arrival patterns. Bee is a decentralized system that organizes peers into a randomized mesh-based overlay, and each peer only works with local knowledge. We introduce the slowest peer first strategy to boost the speed of dissemination and present a topology adaptation algorithm that adapts the number of connections based on upload bandwidth capacity of a peer. Bee is designed to support network heterogeneity and deals with the flash crowd arrival pattern without sacrificing the dissemination speed. We also show the lower bound analysis of the data dissemination problem, and present the experimental results to demonstrate that the performance of Bee can roughly approximate the lower bound of the data dissemination problem under flash crowd traffic. |
doi_str_mv | 10.1109/OJCS.2022.3149411 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9707877</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9707877</ieee_id><doaj_id>oai_doaj_org_article_da9454a846ca40f385309edcc2cd8564</doaj_id><sourcerecordid>2633051406</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-d1467db83ed4aded19ef3e1ec90cc4bbac561100aa84c5a4a7986969f5d981283</originalsourceid><addsrcrecordid>eNpNkE9PAjEQxTdGEwnyAYyXTTwvdvpvW29mEcWQcBDOzdB2tQRYbJcYv72LEOJpJpM3v3nzsuwWyBCA6IfZW_U-pITSIQOuOcBF1qOS8wKoVJf_-utskNKKEEIFADDRyx7nYeOLKoY2WFznI2wxH4WU_CZssQ3NNl9snY_5eI3pM69i8-3yecS6DvYmu6pxnfzgVPvZYvw8r16L6exlUj1NC8sEbwsHXJZuqZh3HJ13oH3NPHiribV8uUQrZPcFQVTcCuRYaiW11LVwWgFVrJ9NjlzX4MrsYthg_DENBvM3aOKHwdjZX3vjUHPBO5C0yEnNlGBEe2cttU4JyTvW_ZG1i83X3qfWrJp93Hb2DZWMEQGcyE4FR5WNTUrR1-erQMwhcXNI3BwSN6fEu527407w3p_1uiSlKkv2CyWHenY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2633051406</pqid></control><display><type>article</type><title>Time-Critical Data Dissemination Under Flash Crowd Traffic</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Wu, Chi-Jen ; Ho, Jan-Ming</creator><creatorcontrib>Wu, Chi-Jen ; Ho, Jan-Ming</creatorcontrib><description>How to rapidly disseminate a large-sized file to many recipients in flash crowd arrival patterns is a fundamental challenge in many applications, such as distributing multimedia content. To tackle this challenge, we present the Bee, which is a time-critical peer-to-peer data dissemination system aiming at minimizing the maximum dissemination time for all peers to obtain the complete file in flash crowd arrival patterns. Bee is a decentralized system that organizes peers into a randomized mesh-based overlay, and each peer only works with local knowledge. We introduce the slowest peer first strategy to boost the speed of dissemination and present a topology adaptation algorithm that adapts the number of connections based on upload bandwidth capacity of a peer. Bee is designed to support network heterogeneity and deals with the flash crowd arrival pattern without sacrificing the dissemination speed. We also show the lower bound analysis of the data dissemination problem, and present the experimental results to demonstrate that the performance of Bee can roughly approximate the lower bound of the data dissemination problem under flash crowd traffic.</description><identifier>ISSN: 2644-1268</identifier><identifier>EISSN: 2644-1268</identifier><identifier>DOI: 10.1109/OJCS.2022.3149411</identifier><identifier>CODEN: IOJCB2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Approximation algorithms ; Bandwidth ; content distribution ; Data dissemination ; flash crowd ; Heterogeneity ; Lower bounds ; Multimedia ; Peer-to-peer ; Peer-to-peer computing ; Peers ; Topology ; Uplink</subject><ispartof>IEEE open journal of the Computer Society, 2022, Vol.3, p.11-22</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c354t-d1467db83ed4aded19ef3e1ec90cc4bbac561100aa84c5a4a7986969f5d981283</cites><orcidid>0000-0002-6468-0952 ; 0000-0002-2432-8233</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9707877$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Wu, Chi-Jen</creatorcontrib><creatorcontrib>Ho, Jan-Ming</creatorcontrib><title>Time-Critical Data Dissemination Under Flash Crowd Traffic</title><title>IEEE open journal of the Computer Society</title><addtitle>OJCS</addtitle><description>How to rapidly disseminate a large-sized file to many recipients in flash crowd arrival patterns is a fundamental challenge in many applications, such as distributing multimedia content. To tackle this challenge, we present the Bee, which is a time-critical peer-to-peer data dissemination system aiming at minimizing the maximum dissemination time for all peers to obtain the complete file in flash crowd arrival patterns. Bee is a decentralized system that organizes peers into a randomized mesh-based overlay, and each peer only works with local knowledge. We introduce the slowest peer first strategy to boost the speed of dissemination and present a topology adaptation algorithm that adapts the number of connections based on upload bandwidth capacity of a peer. Bee is designed to support network heterogeneity and deals with the flash crowd arrival pattern without sacrificing the dissemination speed. We also show the lower bound analysis of the data dissemination problem, and present the experimental results to demonstrate that the performance of Bee can roughly approximate the lower bound of the data dissemination problem under flash crowd traffic.</description><subject>Algorithms</subject><subject>Approximation algorithms</subject><subject>Bandwidth</subject><subject>content distribution</subject><subject>Data dissemination</subject><subject>flash crowd</subject><subject>Heterogeneity</subject><subject>Lower bounds</subject><subject>Multimedia</subject><subject>Peer-to-peer</subject><subject>Peer-to-peer computing</subject><subject>Peers</subject><subject>Topology</subject><subject>Uplink</subject><issn>2644-1268</issn><issn>2644-1268</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkE9PAjEQxTdGEwnyAYyXTTwvdvpvW29mEcWQcBDOzdB2tQRYbJcYv72LEOJpJpM3v3nzsuwWyBCA6IfZW_U-pITSIQOuOcBF1qOS8wKoVJf_-utskNKKEEIFADDRyx7nYeOLKoY2WFznI2wxH4WU_CZssQ3NNl9snY_5eI3pM69i8-3yecS6DvYmu6pxnfzgVPvZYvw8r16L6exlUj1NC8sEbwsHXJZuqZh3HJ13oH3NPHiribV8uUQrZPcFQVTcCuRYaiW11LVwWgFVrJ9NjlzX4MrsYthg_DENBvM3aOKHwdjZX3vjUHPBO5C0yEnNlGBEe2cttU4JyTvW_ZG1i83X3qfWrJp93Hb2DZWMEQGcyE4FR5WNTUrR1-erQMwhcXNI3BwSN6fEu527407w3p_1uiSlKkv2CyWHenY</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Wu, Chi-Jen</creator><creator>Ho, Jan-Ming</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6468-0952</orcidid><orcidid>https://orcid.org/0000-0002-2432-8233</orcidid></search><sort><creationdate>2022</creationdate><title>Time-Critical Data Dissemination Under Flash Crowd Traffic</title><author>Wu, Chi-Jen ; Ho, Jan-Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-d1467db83ed4aded19ef3e1ec90cc4bbac561100aa84c5a4a7986969f5d981283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Approximation algorithms</topic><topic>Bandwidth</topic><topic>content distribution</topic><topic>Data dissemination</topic><topic>flash crowd</topic><topic>Heterogeneity</topic><topic>Lower bounds</topic><topic>Multimedia</topic><topic>Peer-to-peer</topic><topic>Peer-to-peer computing</topic><topic>Peers</topic><topic>Topology</topic><topic>Uplink</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Chi-Jen</creatorcontrib><creatorcontrib>Ho, Jan-Ming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE open journal of the Computer Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Chi-Jen</au><au>Ho, Jan-Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time-Critical Data Dissemination Under Flash Crowd Traffic</atitle><jtitle>IEEE open journal of the Computer Society</jtitle><stitle>OJCS</stitle><date>2022</date><risdate>2022</risdate><volume>3</volume><spage>11</spage><epage>22</epage><pages>11-22</pages><issn>2644-1268</issn><eissn>2644-1268</eissn><coden>IOJCB2</coden><abstract>How to rapidly disseminate a large-sized file to many recipients in flash crowd arrival patterns is a fundamental challenge in many applications, such as distributing multimedia content. To tackle this challenge, we present the Bee, which is a time-critical peer-to-peer data dissemination system aiming at minimizing the maximum dissemination time for all peers to obtain the complete file in flash crowd arrival patterns. Bee is a decentralized system that organizes peers into a randomized mesh-based overlay, and each peer only works with local knowledge. We introduce the slowest peer first strategy to boost the speed of dissemination and present a topology adaptation algorithm that adapts the number of connections based on upload bandwidth capacity of a peer. Bee is designed to support network heterogeneity and deals with the flash crowd arrival pattern without sacrificing the dissemination speed. We also show the lower bound analysis of the data dissemination problem, and present the experimental results to demonstrate that the performance of Bee can roughly approximate the lower bound of the data dissemination problem under flash crowd traffic.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/OJCS.2022.3149411</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6468-0952</orcidid><orcidid>https://orcid.org/0000-0002-2432-8233</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2644-1268 |
ispartof | IEEE open journal of the Computer Society, 2022, Vol.3, p.11-22 |
issn | 2644-1268 2644-1268 |
language | eng |
recordid | cdi_ieee_primary_9707877 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Approximation algorithms Bandwidth content distribution Data dissemination flash crowd Heterogeneity Lower bounds Multimedia Peer-to-peer Peer-to-peer computing Peers Topology Uplink |
title | Time-Critical Data Dissemination Under Flash Crowd Traffic |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T02%3A23%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time-Critical%20Data%20Dissemination%20Under%20Flash%20Crowd%20Traffic&rft.jtitle=IEEE%20open%20journal%20of%20the%20Computer%20Society&rft.au=Wu,%20Chi-Jen&rft.date=2022&rft.volume=3&rft.spage=11&rft.epage=22&rft.pages=11-22&rft.issn=2644-1268&rft.eissn=2644-1268&rft.coden=IOJCB2&rft_id=info:doi/10.1109/OJCS.2022.3149411&rft_dat=%3Cproquest_ieee_%3E2633051406%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2633051406&rft_id=info:pmid/&rft_ieee_id=9707877&rft_doaj_id=oai_doaj_org_article_da9454a846ca40f385309edcc2cd8564&rfr_iscdi=true |