Finite Horizon H-Infinity Control of Nonlinear Time-Varying Systems Under WTOD Protocol
The finite horizon H_{\infty } control problem is investigated for a class of discrete nonlinear time-varying systems subject to Weighted Try-Once-Discard communication protocol. The equations of state and output under investigation involve both deterministic and stochastic nonlinearities. By reso...
Gespeichert in:
Veröffentlicht in: | IEEE access 2022, Vol.10, p.20400-20406 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20406 |
---|---|
container_issue | |
container_start_page | 20400 |
container_title | IEEE access |
container_volume | 10 |
creator | Huang, Kewang Pan, Feng |
description | The finite horizon H_{\infty } control problem is investigated for a class of discrete nonlinear time-varying systems subject to Weighted Try-Once-Discard communication protocol. The equations of state and output under investigation involve both deterministic and stochastic nonlinearities. By resorting to the Taylor series expansion formula, Lyapunov stability theory and cross-amplification lemma, sufficient conditions are established for the existence of the desired observer-based \text{H}\infty controller. The gain matrices of the controller and observer are obtained by solving a set of recursive linear matrix inequalities. |
doi_str_mv | 10.1109/ACCESS.2022.3149510 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9707611</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9707611</ieee_id><doaj_id>oai_doaj_org_article_76f8d2cbf7b64b0fab00e8ca2e068d27</doaj_id><sourcerecordid>2635046853</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-6658a1190f4091a0764b9a1fdd34c1abd2f444f3b93ee9846b3fa2cd3c70250a3</originalsourceid><addsrcrecordid>eNpNUU1vwjAMraZN2sT4BVwi7VyWr6bNcepgIKExCRjHKE0TFFQSlpYD-_UL64Tmi61nv2dbL0lGCI4Rgvz5pSwnq9UYQ4zHBFGeIXiTPGDEeEoywm7_1ffJsG33MEYRoSx_SLZT62ynwcwH--0dmKVzZy7QGZTedcE3wBvw7l1jnZYBrO1Bp58ynK3bgdW57fShBRtX6wC26-Ur-Ai-88o3j8mdkU2rh395kGymk3U5SxfLt3n5skgVyYouZSwrJEIcGgo5kjBntOISmbomVCFZ1dhQSg2pONGaF5RVxEisaqJyiDMoySCZ97q1l3txDPYQbxNeWvEL-LATMnRWNVrkzBQ1VpXJq7gFGllBqAslsYYsNvKo9dRrHYP_Oum2E3t_Ci6eLzAjGaSsyEicIv2UCr5tgzbXrQiKiyGiN0RcDBF_hkTWqGdZrfWVwfP4MULkB-xmhjM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2635046853</pqid></control><display><type>article</type><title>Finite Horizon H-Infinity Control of Nonlinear Time-Varying Systems Under WTOD Protocol</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Huang, Kewang ; Pan, Feng</creator><creatorcontrib>Huang, Kewang ; Pan, Feng</creatorcontrib><description><![CDATA[The finite horizon <inline-formula> <tex-math notation="LaTeX">H_{\infty } </tex-math></inline-formula> control problem is investigated for a class of discrete nonlinear time-varying systems subject to Weighted Try-Once-Discard communication protocol. The equations of state and output under investigation involve both deterministic and stochastic nonlinearities. By resorting to the Taylor series expansion formula, Lyapunov stability theory and cross-amplification lemma, sufficient conditions are established for the existence of the desired observer-based <inline-formula> <tex-math notation="LaTeX">\text{H}\infty </tex-math></inline-formula> controller. The gain matrices of the controller and observer are obtained by solving a set of recursive linear matrix inequalities.]]></description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3149510</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">H∞ control ; Controllers ; Equations of state ; finite horizon ; H-infinity control ; Linear matrix inequalities ; Mathematical analysis ; Nonlinear control ; Nonlinear systems ; nonlinear time-varying networked control systems ; Nonlinearity ; Protocols ; Sensor systems ; Sensors ; Series expansion ; Symmetric matrices ; Taylor series ; Time varying control systems ; Time-varying systems ; weighted try-once-discard communication protocols</subject><ispartof>IEEE access, 2022, Vol.10, p.20400-20406</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c358t-6658a1190f4091a0764b9a1fdd34c1abd2f444f3b93ee9846b3fa2cd3c70250a3</cites><orcidid>0000-0003-1296-8601 ; 0000-0002-5203-2683</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9707611$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2101,4023,27632,27922,27923,27924,54932</link.rule.ids></links><search><creatorcontrib>Huang, Kewang</creatorcontrib><creatorcontrib>Pan, Feng</creatorcontrib><title>Finite Horizon H-Infinity Control of Nonlinear Time-Varying Systems Under WTOD Protocol</title><title>IEEE access</title><addtitle>Access</addtitle><description><![CDATA[The finite horizon <inline-formula> <tex-math notation="LaTeX">H_{\infty } </tex-math></inline-formula> control problem is investigated for a class of discrete nonlinear time-varying systems subject to Weighted Try-Once-Discard communication protocol. The equations of state and output under investigation involve both deterministic and stochastic nonlinearities. By resorting to the Taylor series expansion formula, Lyapunov stability theory and cross-amplification lemma, sufficient conditions are established for the existence of the desired observer-based <inline-formula> <tex-math notation="LaTeX">\text{H}\infty </tex-math></inline-formula> controller. The gain matrices of the controller and observer are obtained by solving a set of recursive linear matrix inequalities.]]></description><subject><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">H∞ control</subject><subject>Controllers</subject><subject>Equations of state</subject><subject>finite horizon</subject><subject>H-infinity control</subject><subject>Linear matrix inequalities</subject><subject>Mathematical analysis</subject><subject>Nonlinear control</subject><subject>Nonlinear systems</subject><subject>nonlinear time-varying networked control systems</subject><subject>Nonlinearity</subject><subject>Protocols</subject><subject>Sensor systems</subject><subject>Sensors</subject><subject>Series expansion</subject><subject>Symmetric matrices</subject><subject>Taylor series</subject><subject>Time varying control systems</subject><subject>Time-varying systems</subject><subject>weighted try-once-discard communication protocols</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1vwjAMraZN2sT4BVwi7VyWr6bNcepgIKExCRjHKE0TFFQSlpYD-_UL64Tmi61nv2dbL0lGCI4Rgvz5pSwnq9UYQ4zHBFGeIXiTPGDEeEoywm7_1ffJsG33MEYRoSx_SLZT62ynwcwH--0dmKVzZy7QGZTedcE3wBvw7l1jnZYBrO1Bp58ynK3bgdW57fShBRtX6wC26-Ur-Ai-88o3j8mdkU2rh395kGymk3U5SxfLt3n5skgVyYouZSwrJEIcGgo5kjBntOISmbomVCFZ1dhQSg2pONGaF5RVxEisaqJyiDMoySCZ97q1l3txDPYQbxNeWvEL-LATMnRWNVrkzBQ1VpXJq7gFGllBqAslsYYsNvKo9dRrHYP_Oum2E3t_Ci6eLzAjGaSsyEicIv2UCr5tgzbXrQiKiyGiN0RcDBF_hkTWqGdZrfWVwfP4MULkB-xmhjM</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Huang, Kewang</creator><creator>Pan, Feng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1296-8601</orcidid><orcidid>https://orcid.org/0000-0002-5203-2683</orcidid></search><sort><creationdate>2022</creationdate><title>Finite Horizon H-Infinity Control of Nonlinear Time-Varying Systems Under WTOD Protocol</title><author>Huang, Kewang ; Pan, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-6658a1190f4091a0764b9a1fdd34c1abd2f444f3b93ee9846b3fa2cd3c70250a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">H∞ control</topic><topic>Controllers</topic><topic>Equations of state</topic><topic>finite horizon</topic><topic>H-infinity control</topic><topic>Linear matrix inequalities</topic><topic>Mathematical analysis</topic><topic>Nonlinear control</topic><topic>Nonlinear systems</topic><topic>nonlinear time-varying networked control systems</topic><topic>Nonlinearity</topic><topic>Protocols</topic><topic>Sensor systems</topic><topic>Sensors</topic><topic>Series expansion</topic><topic>Symmetric matrices</topic><topic>Taylor series</topic><topic>Time varying control systems</topic><topic>Time-varying systems</topic><topic>weighted try-once-discard communication protocols</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Kewang</creatorcontrib><creatorcontrib>Pan, Feng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Kewang</au><au>Pan, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite Horizon H-Infinity Control of Nonlinear Time-Varying Systems Under WTOD Protocol</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>20400</spage><epage>20406</epage><pages>20400-20406</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract><![CDATA[The finite horizon <inline-formula> <tex-math notation="LaTeX">H_{\infty } </tex-math></inline-formula> control problem is investigated for a class of discrete nonlinear time-varying systems subject to Weighted Try-Once-Discard communication protocol. The equations of state and output under investigation involve both deterministic and stochastic nonlinearities. By resorting to the Taylor series expansion formula, Lyapunov stability theory and cross-amplification lemma, sufficient conditions are established for the existence of the desired observer-based <inline-formula> <tex-math notation="LaTeX">\text{H}\infty </tex-math></inline-formula> controller. The gain matrices of the controller and observer are obtained by solving a set of recursive linear matrix inequalities.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3149510</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-1296-8601</orcidid><orcidid>https://orcid.org/0000-0002-5203-2683</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2022, Vol.10, p.20400-20406 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_9707611 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">H∞ control Controllers Equations of state finite horizon H-infinity control Linear matrix inequalities Mathematical analysis Nonlinear control Nonlinear systems nonlinear time-varying networked control systems Nonlinearity Protocols Sensor systems Sensors Series expansion Symmetric matrices Taylor series Time varying control systems Time-varying systems weighted try-once-discard communication protocols |
title | Finite Horizon H-Infinity Control of Nonlinear Time-Varying Systems Under WTOD Protocol |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T12%3A13%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite%20Horizon%20H-Infinity%20Control%20of%20Nonlinear%20Time-Varying%20Systems%20Under%20WTOD%20Protocol&rft.jtitle=IEEE%20access&rft.au=Huang,%20Kewang&rft.date=2022&rft.volume=10&rft.spage=20400&rft.epage=20406&rft.pages=20400-20406&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3149510&rft_dat=%3Cproquest_ieee_%3E2635046853%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2635046853&rft_id=info:pmid/&rft_ieee_id=9707611&rft_doaj_id=oai_doaj_org_article_76f8d2cbf7b64b0fab00e8ca2e068d27&rfr_iscdi=true |