Supervised Learning in a Multilayer, Nonlinear Chemical Neural Network

The development of programmable or trainable molecular circuits is an important goal in the field of molecular programming. Multilayer, nonlinear, artificial neural networks are a powerful framework for implementing such functionality in a molecular system, as they are provably universal function ap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2023-10, Vol.34 (10), p.7734-7745
Hauptverfasser: Arredondo, David, Lakin, Matthew R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7745
container_issue 10
container_start_page 7734
container_title IEEE transaction on neural networks and learning systems
container_volume 34
creator Arredondo, David
Lakin, Matthew R.
description The development of programmable or trainable molecular circuits is an important goal in the field of molecular programming. Multilayer, nonlinear, artificial neural networks are a powerful framework for implementing such functionality in a molecular system, as they are provably universal function approximators. Here, we present a design for multilayer chemical neural networks with a nonlinear hyperbolic tangent transfer function. We use a weight perturbation algorithm to train the neural network which uses a simple construction to directly approximate the loss derivatives required for training. We demonstrate the training of this system to learn all 16 two-input binary functions from a common starting point. This work thus introduces new capabilities in the field of adaptive and trainable chemical reaction network (CRN) design. It also opens the door to potential future experimental implementations, including DNA strand displacement reactions.
doi_str_mv 10.1109/TNNLS.2022.3146057
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9707599</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9707599</ieee_id><sourcerecordid>2873588429</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-327d3f60ea9cd43484a8fc1dc2d7d80b0460f35cf578e4efc5298796c3e71adf3</originalsourceid><addsrcrecordid>eNpdkMtOwzAQRS0EolXpD4CEIrFhQYofSWwvUUUBKZRFi8TOcp0JuKRJsRtQ_x73QRd4M5bumRn7IHRO8IAQLG-n43E-GVBM6YCRJMMpP0JdSjIaUybE8eHO3zqo7_0chxOoLJGnqMNSwpjkuItGk3YJ7tt6KKIctKtt_R7ZOtLRc1utbKXX4G6icVNXtg5xNPyAhTW6isbQum1Z_TTu8wydlLry0N_XHnod3U-Hj3H-8vA0vMtjE1auYkZ5wcoMg5amSFgiEi1KQwpDC14IPMPhIyVLTZlyAQmUJqVScJkZBpzoomQ9dL2bu3TNVwt-pRbWG6gqXUPTekUzyglLOGUBvfqHzpvW1eF1igrOUiESKgNFd5RxjfcOSrV0dqHdWhGsNqLVVrTaiFZ70aHpcj-6nS2gOLT8aQ3AxQ6wAHCIQ8JTKdkvDQqAqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2873588429</pqid></control><display><type>article</type><title>Supervised Learning in a Multilayer, Nonlinear Chemical Neural Network</title><source>IEEE</source><creator>Arredondo, David ; Lakin, Matthew R.</creator><creatorcontrib>Arredondo, David ; Lakin, Matthew R.</creatorcontrib><description>The development of programmable or trainable molecular circuits is an important goal in the field of molecular programming. Multilayer, nonlinear, artificial neural networks are a powerful framework for implementing such functionality in a molecular system, as they are provably universal function approximators. Here, we present a design for multilayer chemical neural networks with a nonlinear hyperbolic tangent transfer function. We use a weight perturbation algorithm to train the neural network which uses a simple construction to directly approximate the loss derivatives required for training. We demonstrate the training of this system to learn all 16 two-input binary functions from a common starting point. This work thus introduces new capabilities in the field of adaptive and trainable chemical reaction network (CRN) design. It also opens the door to potential future experimental implementations, including DNA strand displacement reactions.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2022.3146057</identifier><identifier>PMID: 35133970</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Biological neural networks ; Chemical reaction networks (CRNs) ; Chemical reactions ; Chemicals ; Clocks ; Computer architecture ; Deoxyribonucleic acid ; DNA ; Hyperbolic functions ; hyperbolic tangent ; Machine learning ; Multilayers ; Neural networks ; Neurons ; nonlinearity ; Perturbation ; Supervised learning ; Training ; Transfer functions</subject><ispartof>IEEE transaction on neural networks and learning systems, 2023-10, Vol.34 (10), p.7734-7745</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-327d3f60ea9cd43484a8fc1dc2d7d80b0460f35cf578e4efc5298796c3e71adf3</citedby><cites>FETCH-LOGICAL-c351t-327d3f60ea9cd43484a8fc1dc2d7d80b0460f35cf578e4efc5298796c3e71adf3</cites><orcidid>0000-0003-2477-9162 ; 0000-0002-8516-4789</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9707599$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9707599$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35133970$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Arredondo, David</creatorcontrib><creatorcontrib>Lakin, Matthew R.</creatorcontrib><title>Supervised Learning in a Multilayer, Nonlinear Chemical Neural Network</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>The development of programmable or trainable molecular circuits is an important goal in the field of molecular programming. Multilayer, nonlinear, artificial neural networks are a powerful framework for implementing such functionality in a molecular system, as they are provably universal function approximators. Here, we present a design for multilayer chemical neural networks with a nonlinear hyperbolic tangent transfer function. We use a weight perturbation algorithm to train the neural network which uses a simple construction to directly approximate the loss derivatives required for training. We demonstrate the training of this system to learn all 16 two-input binary functions from a common starting point. This work thus introduces new capabilities in the field of adaptive and trainable chemical reaction network (CRN) design. It also opens the door to potential future experimental implementations, including DNA strand displacement reactions.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Biological neural networks</subject><subject>Chemical reaction networks (CRNs)</subject><subject>Chemical reactions</subject><subject>Chemicals</subject><subject>Clocks</subject><subject>Computer architecture</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Hyperbolic functions</subject><subject>hyperbolic tangent</subject><subject>Machine learning</subject><subject>Multilayers</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>nonlinearity</subject><subject>Perturbation</subject><subject>Supervised learning</subject><subject>Training</subject><subject>Transfer functions</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkMtOwzAQRS0EolXpD4CEIrFhQYofSWwvUUUBKZRFi8TOcp0JuKRJsRtQ_x73QRd4M5bumRn7IHRO8IAQLG-n43E-GVBM6YCRJMMpP0JdSjIaUybE8eHO3zqo7_0chxOoLJGnqMNSwpjkuItGk3YJ7tt6KKIctKtt_R7ZOtLRc1utbKXX4G6icVNXtg5xNPyAhTW6isbQum1Z_TTu8wydlLry0N_XHnod3U-Hj3H-8vA0vMtjE1auYkZ5wcoMg5amSFgiEi1KQwpDC14IPMPhIyVLTZlyAQmUJqVScJkZBpzoomQ9dL2bu3TNVwt-pRbWG6gqXUPTekUzyglLOGUBvfqHzpvW1eF1igrOUiESKgNFd5RxjfcOSrV0dqHdWhGsNqLVVrTaiFZ70aHpcj-6nS2gOLT8aQ3AxQ6wAHCIQ8JTKdkvDQqAqg</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Arredondo, David</creator><creator>Lakin, Matthew R.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2477-9162</orcidid><orcidid>https://orcid.org/0000-0002-8516-4789</orcidid></search><sort><creationdate>20231001</creationdate><title>Supervised Learning in a Multilayer, Nonlinear Chemical Neural Network</title><author>Arredondo, David ; Lakin, Matthew R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-327d3f60ea9cd43484a8fc1dc2d7d80b0460f35cf578e4efc5298796c3e71adf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Biological neural networks</topic><topic>Chemical reaction networks (CRNs)</topic><topic>Chemical reactions</topic><topic>Chemicals</topic><topic>Clocks</topic><topic>Computer architecture</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Hyperbolic functions</topic><topic>hyperbolic tangent</topic><topic>Machine learning</topic><topic>Multilayers</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>nonlinearity</topic><topic>Perturbation</topic><topic>Supervised learning</topic><topic>Training</topic><topic>Transfer functions</topic><toplevel>online_resources</toplevel><creatorcontrib>Arredondo, David</creatorcontrib><creatorcontrib>Lakin, Matthew R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Arredondo, David</au><au>Lakin, Matthew R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Supervised Learning in a Multilayer, Nonlinear Chemical Neural Network</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2023-10-01</date><risdate>2023</risdate><volume>34</volume><issue>10</issue><spage>7734</spage><epage>7745</epage><pages>7734-7745</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>The development of programmable or trainable molecular circuits is an important goal in the field of molecular programming. Multilayer, nonlinear, artificial neural networks are a powerful framework for implementing such functionality in a molecular system, as they are provably universal function approximators. Here, we present a design for multilayer chemical neural networks with a nonlinear hyperbolic tangent transfer function. We use a weight perturbation algorithm to train the neural network which uses a simple construction to directly approximate the loss derivatives required for training. We demonstrate the training of this system to learn all 16 two-input binary functions from a common starting point. This work thus introduces new capabilities in the field of adaptive and trainable chemical reaction network (CRN) design. It also opens the door to potential future experimental implementations, including DNA strand displacement reactions.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>35133970</pmid><doi>10.1109/TNNLS.2022.3146057</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2477-9162</orcidid><orcidid>https://orcid.org/0000-0002-8516-4789</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2162-237X
ispartof IEEE transaction on neural networks and learning systems, 2023-10, Vol.34 (10), p.7734-7745
issn 2162-237X
2162-2388
language eng
recordid cdi_ieee_primary_9707599
source IEEE
subjects Algorithms
Artificial neural networks
Biological neural networks
Chemical reaction networks (CRNs)
Chemical reactions
Chemicals
Clocks
Computer architecture
Deoxyribonucleic acid
DNA
Hyperbolic functions
hyperbolic tangent
Machine learning
Multilayers
Neural networks
Neurons
nonlinearity
Perturbation
Supervised learning
Training
Transfer functions
title Supervised Learning in a Multilayer, Nonlinear Chemical Neural Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T08%3A08%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Supervised%20Learning%20in%20a%20Multilayer,%20Nonlinear%20Chemical%20Neural%20Network&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Arredondo,%20David&rft.date=2023-10-01&rft.volume=34&rft.issue=10&rft.spage=7734&rft.epage=7745&rft.pages=7734-7745&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2022.3146057&rft_dat=%3Cproquest_RIE%3E2873588429%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2873588429&rft_id=info:pmid/35133970&rft_ieee_id=9707599&rfr_iscdi=true