Application research based on improved genetic algorithm for optimum design of power transformers

In order to attain global optimal or quasioptimum solution for power transformers design, some interrelated key techniques such as encoding scheme, genetic operators, constrained condition, fitness function for the simple genetic algorithm (SGA) are further reformed and researched. An improved genet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Li Hui, Han Li, He Bei, Yang Shunchang
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 245 vol.1
container_issue
container_start_page 242
container_title
container_volume 1
creator Li Hui
Han Li
He Bei
Yang Shunchang
description In order to attain global optimal or quasioptimum solution for power transformers design, some interrelated key techniques such as encoding scheme, genetic operators, constrained condition, fitness function for the simple genetic algorithm (SGA) are further reformed and researched. An improved genetic algorithm (IGA) is developed in this paper and applied to the optimum design of S9 power transformers for the first time. In addition, a multi-objective algorithm based on IGA is applied successfully in the double objective optimum design of S9 power transformers, by using the theory of variable weight coefficients for the multi-objective optimization. All the achievements in the paper are verified by a representative mathematical example and a practical S9-1000/10 kV power transformer. All the optimization results are satisfactory and show that IGA has powerful ability of global searching, excellent solution precision and has a bright application prospect in the fields of power transformers design.
doi_str_mv 10.1109/ICEMS.2001.970657
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_970657</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>970657</ieee_id><sourcerecordid>970657</sourcerecordid><originalsourceid>FETCH-LOGICAL-c222t-a34c233c8f92d0a9b2568bba1ecbb7103c946fc6e45c4900b95b03ad856231653</originalsourceid><addsrcrecordid>eNotkM1KxDAcxAMiqOs-gJ7yAq35aNLmuCyrLqx4UM9Lkv7bjTRNSKLi21tY5zLDj2EOg9AdJTWlRD3st7uXt5oRQmvVEinaC3TTCiKZoFSoK7TO-ZMs4qrhor1GehPj5KwuLsw4QQad7AkbnaHHC3E-pvC95BFmKM5iPY0huXLyeAgJh1ic__K4h-zGGYcBx_ADCZek57wUPKR8iy4HPWVY__sKfTzu3rfP1eH1ab_dHCrLGCuV5o1lnNtuUKwnWhkmZGeMpmCNaSnhVjVysBIaYRtFiFHCEK77TkjGqRR8he7Puw4AjjE5r9Pv8XwC_wMG71Ro</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Application research based on improved genetic algorithm for optimum design of power transformers</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Li Hui ; Han Li ; He Bei ; Yang Shunchang</creator><creatorcontrib>Li Hui ; Han Li ; He Bei ; Yang Shunchang</creatorcontrib><description>In order to attain global optimal or quasioptimum solution for power transformers design, some interrelated key techniques such as encoding scheme, genetic operators, constrained condition, fitness function for the simple genetic algorithm (SGA) are further reformed and researched. An improved genetic algorithm (IGA) is developed in this paper and applied to the optimum design of S9 power transformers for the first time. In addition, a multi-objective algorithm based on IGA is applied successfully in the double objective optimum design of S9 power transformers, by using the theory of variable weight coefficients for the multi-objective optimization. All the achievements in the paper are verified by a representative mathematical example and a practical S9-1000/10 kV power transformer. All the optimization results are satisfactory and show that IGA has powerful ability of global searching, excellent solution precision and has a bright application prospect in the fields of power transformers design.</description><identifier>ISBN: 7506251159</identifier><identifier>ISBN: 9787506251150</identifier><identifier>DOI: 10.1109/ICEMS.2001.970657</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Biological cells ; Cost function ; Design optimization ; Educational institutions ; Encoding ; Genetic algorithms ; Helium ; Power engineering and energy ; Power transformers</subject><ispartof>ICEMS'2001. Proceedings of the Fifth International Conference on Electrical Machines and Systems (IEEE Cat. No.01EX501), 2001, Vol.1, p.242-245 vol.1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c222t-a34c233c8f92d0a9b2568bba1ecbb7103c946fc6e45c4900b95b03ad856231653</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/970657$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/970657$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li Hui</creatorcontrib><creatorcontrib>Han Li</creatorcontrib><creatorcontrib>He Bei</creatorcontrib><creatorcontrib>Yang Shunchang</creatorcontrib><title>Application research based on improved genetic algorithm for optimum design of power transformers</title><title>ICEMS'2001. Proceedings of the Fifth International Conference on Electrical Machines and Systems (IEEE Cat. No.01EX501)</title><addtitle>ICEMS</addtitle><description>In order to attain global optimal or quasioptimum solution for power transformers design, some interrelated key techniques such as encoding scheme, genetic operators, constrained condition, fitness function for the simple genetic algorithm (SGA) are further reformed and researched. An improved genetic algorithm (IGA) is developed in this paper and applied to the optimum design of S9 power transformers for the first time. In addition, a multi-objective algorithm based on IGA is applied successfully in the double objective optimum design of S9 power transformers, by using the theory of variable weight coefficients for the multi-objective optimization. All the achievements in the paper are verified by a representative mathematical example and a practical S9-1000/10 kV power transformer. All the optimization results are satisfactory and show that IGA has powerful ability of global searching, excellent solution precision and has a bright application prospect in the fields of power transformers design.</description><subject>Algorithm design and analysis</subject><subject>Biological cells</subject><subject>Cost function</subject><subject>Design optimization</subject><subject>Educational institutions</subject><subject>Encoding</subject><subject>Genetic algorithms</subject><subject>Helium</subject><subject>Power engineering and energy</subject><subject>Power transformers</subject><isbn>7506251159</isbn><isbn>9787506251150</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2001</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkM1KxDAcxAMiqOs-gJ7yAq35aNLmuCyrLqx4UM9Lkv7bjTRNSKLi21tY5zLDj2EOg9AdJTWlRD3st7uXt5oRQmvVEinaC3TTCiKZoFSoK7TO-ZMs4qrhor1GehPj5KwuLsw4QQad7AkbnaHHC3E-pvC95BFmKM5iPY0huXLyeAgJh1ic__K4h-zGGYcBx_ADCZek57wUPKR8iy4HPWVY__sKfTzu3rfP1eH1ab_dHCrLGCuV5o1lnNtuUKwnWhkmZGeMpmCNaSnhVjVysBIaYRtFiFHCEK77TkjGqRR8he7Puw4AjjE5r9Pv8XwC_wMG71Ro</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>Li Hui</creator><creator>Han Li</creator><creator>He Bei</creator><creator>Yang Shunchang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2001</creationdate><title>Application research based on improved genetic algorithm for optimum design of power transformers</title><author>Li Hui ; Han Li ; He Bei ; Yang Shunchang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c222t-a34c233c8f92d0a9b2568bba1ecbb7103c946fc6e45c4900b95b03ad856231653</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Algorithm design and analysis</topic><topic>Biological cells</topic><topic>Cost function</topic><topic>Design optimization</topic><topic>Educational institutions</topic><topic>Encoding</topic><topic>Genetic algorithms</topic><topic>Helium</topic><topic>Power engineering and energy</topic><topic>Power transformers</topic><toplevel>online_resources</toplevel><creatorcontrib>Li Hui</creatorcontrib><creatorcontrib>Han Li</creatorcontrib><creatorcontrib>He Bei</creatorcontrib><creatorcontrib>Yang Shunchang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li Hui</au><au>Han Li</au><au>He Bei</au><au>Yang Shunchang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Application research based on improved genetic algorithm for optimum design of power transformers</atitle><btitle>ICEMS'2001. Proceedings of the Fifth International Conference on Electrical Machines and Systems (IEEE Cat. No.01EX501)</btitle><stitle>ICEMS</stitle><date>2001</date><risdate>2001</risdate><volume>1</volume><spage>242</spage><epage>245 vol.1</epage><pages>242-245 vol.1</pages><isbn>7506251159</isbn><isbn>9787506251150</isbn><abstract>In order to attain global optimal or quasioptimum solution for power transformers design, some interrelated key techniques such as encoding scheme, genetic operators, constrained condition, fitness function for the simple genetic algorithm (SGA) are further reformed and researched. An improved genetic algorithm (IGA) is developed in this paper and applied to the optimum design of S9 power transformers for the first time. In addition, a multi-objective algorithm based on IGA is applied successfully in the double objective optimum design of S9 power transformers, by using the theory of variable weight coefficients for the multi-objective optimization. All the achievements in the paper are verified by a representative mathematical example and a practical S9-1000/10 kV power transformer. All the optimization results are satisfactory and show that IGA has powerful ability of global searching, excellent solution precision and has a bright application prospect in the fields of power transformers design.</abstract><pub>IEEE</pub><doi>10.1109/ICEMS.2001.970657</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 7506251159
ispartof ICEMS'2001. Proceedings of the Fifth International Conference on Electrical Machines and Systems (IEEE Cat. No.01EX501), 2001, Vol.1, p.242-245 vol.1
issn
language eng
recordid cdi_ieee_primary_970657
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
Biological cells
Cost function
Design optimization
Educational institutions
Encoding
Genetic algorithms
Helium
Power engineering and energy
Power transformers
title Application research based on improved genetic algorithm for optimum design of power transformers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T07%3A02%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Application%20research%20based%20on%20improved%20genetic%20algorithm%20for%20optimum%20design%20of%20power%20transformers&rft.btitle=ICEMS'2001.%20Proceedings%20of%20the%20Fifth%20International%20Conference%20on%20Electrical%20Machines%20and%20Systems%20(IEEE%20Cat.%20No.01EX501)&rft.au=Li%20Hui&rft.date=2001&rft.volume=1&rft.spage=242&rft.epage=245%20vol.1&rft.pages=242-245%20vol.1&rft.isbn=7506251159&rft.isbn_list=9787506251150&rft_id=info:doi/10.1109/ICEMS.2001.970657&rft_dat=%3Cieee_6IE%3E970657%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=970657&rfr_iscdi=true