Millimeter-Wave Multi-Static Scattering for Sub-Wavelength Particle Characterization

The concept and formulations for characterization of an isolated spherical particle based on multistatic measurements of electromagnetic scattering are demonstrated in the V -band (50-75 GHz). Both diameter and relative dielectric permittivity, along with an estimate of dielectric loss tangent, are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on microwave theory and techniques 2022-04, Vol.70 (4), p.2351-2362
Hauptverfasser: Dey, Utpal, Hesselbarth, Jan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2362
container_issue 4
container_start_page 2351
container_title IEEE transactions on microwave theory and techniques
container_volume 70
creator Dey, Utpal
Hesselbarth, Jan
description The concept and formulations for characterization of an isolated spherical particle based on multistatic measurements of electromagnetic scattering are demonstrated in the V -band (50-75 GHz). Both diameter and relative dielectric permittivity, along with an estimate of dielectric loss tangent, are extracted simultaneously through rigorous postprocessing of the measured scattering attributes. For the case of an alumina sphere with a dielectric constant of around 10, the classical Mie theory is explored. For comparatively lower permittivity quartz spheres of the dielectric constant of around 4, the electrostatic modeling of induced dipole moment and its associated electric polarizability is employed. Spheres of diameter as small as 1/12-th of the operating wavelength are characterized with small uncertainty for extracted diameters, and the extracted dielectric properties for the spheres agree well with the literature. The advantages and challenges of the proposed multistatic scattering measurement scheme are critically addressed. Finally, the potential of characterization of particle-in-flow in a futuristic integrated subterahertz lab-on-chip module is outlined.
doi_str_mv 10.1109/TMTT.2022.3145014
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9701838</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9701838</ieee_id><sourcerecordid>2647427829</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-68cccda6e0b9a9925d19717481f1c37793842f54d34cb6e5b58a5c6cd1bed213</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKc_QLwpeN2Zk48muZShU9hQWMHLkKbp1tG1M00F_fWmbnh1OJznPS88CN0CngFg9ZCv8nxGMCEzCoxjYGdoApyLVGUCn6MJxiBTxSS-RFd9v4trpOQE5au6aeq9C86nH-bLJauhCXW6DibUNllbE-KlbjdJ1flkPRR_UOPaTdgm78ZHqHHJfGu8sSP4E2Nde40uKtP07uY0pyh_fsrnL-nybfE6f1ymliga0kxaa0uTOVwooxThJSgBgkmowFIhFJWMVJyVlNkic7zg0nCb2RIKVxKgU3R_fHvw3efg-qB33eDb2KhJxgQjQsaeKYIjZX3X995V-uDrvfHfGrAe3enRnR7d6ZO7mLk7Zmrn3D-vRJRIJf0FONdrTQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2647427829</pqid></control><display><type>article</type><title>Millimeter-Wave Multi-Static Scattering for Sub-Wavelength Particle Characterization</title><source>IEEE Electronic Library (IEL)</source><creator>Dey, Utpal ; Hesselbarth, Jan</creator><creatorcontrib>Dey, Utpal ; Hesselbarth, Jan</creatorcontrib><description>The concept and formulations for characterization of an isolated spherical particle based on multistatic measurements of electromagnetic scattering are demonstrated in the &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;V &lt;/tex-math&gt;&lt;/inline-formula&gt;-band (50-75 GHz). Both diameter and relative dielectric permittivity, along with an estimate of dielectric loss tangent, are extracted simultaneously through rigorous postprocessing of the measured scattering attributes. For the case of an alumina sphere with a dielectric constant of around 10, the classical Mie theory is explored. For comparatively lower permittivity quartz spheres of the dielectric constant of around 4, the electrostatic modeling of induced dipole moment and its associated electric polarizability is employed. Spheres of diameter as small as 1/12-th of the operating wavelength are characterized with small uncertainty for extracted diameters, and the extracted dielectric properties for the spheres agree well with the literature. The advantages and challenges of the proposed multistatic scattering measurement scheme are critically addressed. Finally, the potential of characterization of particle-in-flow in a futuristic integrated subterahertz lab-on-chip module is outlined.</description><identifier>ISSN: 0018-9480</identifier><identifier>EISSN: 1557-9670</identifier><identifier>DOI: 10.1109/TMTT.2022.3145014</identifier><identifier>CODEN: IETMAB</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aluminum oxide ; Atmospheric measurements ; Diameters ; Dielectric loss ; Dielectric properties ; Dielectrics ; Dipole moment ; Dipole moments ; Electromagnetic scattering ; Formulations ; Microwave measurement ; Mie scattering ; Mie theory ; Millimeter waves ; millimeter-wave (mm-Wave) ; multistatic scattering ; Particle measurements ; Permittivity ; polarizability ; Rayleigh scattering ; Scattering ; sensor ; spectroscopy ; Spheres</subject><ispartof>IEEE transactions on microwave theory and techniques, 2022-04, Vol.70 (4), p.2351-2362</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-68cccda6e0b9a9925d19717481f1c37793842f54d34cb6e5b58a5c6cd1bed213</citedby><cites>FETCH-LOGICAL-c293t-68cccda6e0b9a9925d19717481f1c37793842f54d34cb6e5b58a5c6cd1bed213</cites><orcidid>0000-0002-4905-8591 ; 0000-0002-4127-4257</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9701838$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9701838$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dey, Utpal</creatorcontrib><creatorcontrib>Hesselbarth, Jan</creatorcontrib><title>Millimeter-Wave Multi-Static Scattering for Sub-Wavelength Particle Characterization</title><title>IEEE transactions on microwave theory and techniques</title><addtitle>TMTT</addtitle><description>The concept and formulations for characterization of an isolated spherical particle based on multistatic measurements of electromagnetic scattering are demonstrated in the &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;V &lt;/tex-math&gt;&lt;/inline-formula&gt;-band (50-75 GHz). Both diameter and relative dielectric permittivity, along with an estimate of dielectric loss tangent, are extracted simultaneously through rigorous postprocessing of the measured scattering attributes. For the case of an alumina sphere with a dielectric constant of around 10, the classical Mie theory is explored. For comparatively lower permittivity quartz spheres of the dielectric constant of around 4, the electrostatic modeling of induced dipole moment and its associated electric polarizability is employed. Spheres of diameter as small as 1/12-th of the operating wavelength are characterized with small uncertainty for extracted diameters, and the extracted dielectric properties for the spheres agree well with the literature. The advantages and challenges of the proposed multistatic scattering measurement scheme are critically addressed. Finally, the potential of characterization of particle-in-flow in a futuristic integrated subterahertz lab-on-chip module is outlined.</description><subject>Aluminum oxide</subject><subject>Atmospheric measurements</subject><subject>Diameters</subject><subject>Dielectric loss</subject><subject>Dielectric properties</subject><subject>Dielectrics</subject><subject>Dipole moment</subject><subject>Dipole moments</subject><subject>Electromagnetic scattering</subject><subject>Formulations</subject><subject>Microwave measurement</subject><subject>Mie scattering</subject><subject>Mie theory</subject><subject>Millimeter waves</subject><subject>millimeter-wave (mm-Wave)</subject><subject>multistatic scattering</subject><subject>Particle measurements</subject><subject>Permittivity</subject><subject>polarizability</subject><subject>Rayleigh scattering</subject><subject>Scattering</subject><subject>sensor</subject><subject>spectroscopy</subject><subject>Spheres</subject><issn>0018-9480</issn><issn>1557-9670</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOKc_QLwpeN2Zk48muZShU9hQWMHLkKbp1tG1M00F_fWmbnh1OJznPS88CN0CngFg9ZCv8nxGMCEzCoxjYGdoApyLVGUCn6MJxiBTxSS-RFd9v4trpOQE5au6aeq9C86nH-bLJauhCXW6DibUNllbE-KlbjdJ1flkPRR_UOPaTdgm78ZHqHHJfGu8sSP4E2Nde40uKtP07uY0pyh_fsrnL-nybfE6f1ymliga0kxaa0uTOVwooxThJSgBgkmowFIhFJWMVJyVlNkic7zg0nCb2RIKVxKgU3R_fHvw3efg-qB33eDb2KhJxgQjQsaeKYIjZX3X995V-uDrvfHfGrAe3enRnR7d6ZO7mLk7Zmrn3D-vRJRIJf0FONdrTQ</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Dey, Utpal</creator><creator>Hesselbarth, Jan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4905-8591</orcidid><orcidid>https://orcid.org/0000-0002-4127-4257</orcidid></search><sort><creationdate>20220401</creationdate><title>Millimeter-Wave Multi-Static Scattering for Sub-Wavelength Particle Characterization</title><author>Dey, Utpal ; Hesselbarth, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-68cccda6e0b9a9925d19717481f1c37793842f54d34cb6e5b58a5c6cd1bed213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aluminum oxide</topic><topic>Atmospheric measurements</topic><topic>Diameters</topic><topic>Dielectric loss</topic><topic>Dielectric properties</topic><topic>Dielectrics</topic><topic>Dipole moment</topic><topic>Dipole moments</topic><topic>Electromagnetic scattering</topic><topic>Formulations</topic><topic>Microwave measurement</topic><topic>Mie scattering</topic><topic>Mie theory</topic><topic>Millimeter waves</topic><topic>millimeter-wave (mm-Wave)</topic><topic>multistatic scattering</topic><topic>Particle measurements</topic><topic>Permittivity</topic><topic>polarizability</topic><topic>Rayleigh scattering</topic><topic>Scattering</topic><topic>sensor</topic><topic>spectroscopy</topic><topic>Spheres</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dey, Utpal</creatorcontrib><creatorcontrib>Hesselbarth, Jan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on microwave theory and techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dey, Utpal</au><au>Hesselbarth, Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Millimeter-Wave Multi-Static Scattering for Sub-Wavelength Particle Characterization</atitle><jtitle>IEEE transactions on microwave theory and techniques</jtitle><stitle>TMTT</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>70</volume><issue>4</issue><spage>2351</spage><epage>2362</epage><pages>2351-2362</pages><issn>0018-9480</issn><eissn>1557-9670</eissn><coden>IETMAB</coden><abstract>The concept and formulations for characterization of an isolated spherical particle based on multistatic measurements of electromagnetic scattering are demonstrated in the &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;V &lt;/tex-math&gt;&lt;/inline-formula&gt;-band (50-75 GHz). Both diameter and relative dielectric permittivity, along with an estimate of dielectric loss tangent, are extracted simultaneously through rigorous postprocessing of the measured scattering attributes. For the case of an alumina sphere with a dielectric constant of around 10, the classical Mie theory is explored. For comparatively lower permittivity quartz spheres of the dielectric constant of around 4, the electrostatic modeling of induced dipole moment and its associated electric polarizability is employed. Spheres of diameter as small as 1/12-th of the operating wavelength are characterized with small uncertainty for extracted diameters, and the extracted dielectric properties for the spheres agree well with the literature. The advantages and challenges of the proposed multistatic scattering measurement scheme are critically addressed. Finally, the potential of characterization of particle-in-flow in a futuristic integrated subterahertz lab-on-chip module is outlined.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMTT.2022.3145014</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4905-8591</orcidid><orcidid>https://orcid.org/0000-0002-4127-4257</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9480
ispartof IEEE transactions on microwave theory and techniques, 2022-04, Vol.70 (4), p.2351-2362
issn 0018-9480
1557-9670
language eng
recordid cdi_ieee_primary_9701838
source IEEE Electronic Library (IEL)
subjects Aluminum oxide
Atmospheric measurements
Diameters
Dielectric loss
Dielectric properties
Dielectrics
Dipole moment
Dipole moments
Electromagnetic scattering
Formulations
Microwave measurement
Mie scattering
Mie theory
Millimeter waves
millimeter-wave (mm-Wave)
multistatic scattering
Particle measurements
Permittivity
polarizability
Rayleigh scattering
Scattering
sensor
spectroscopy
Spheres
title Millimeter-Wave Multi-Static Scattering for Sub-Wavelength Particle Characterization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T14%3A06%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Millimeter-Wave%20Multi-Static%20Scattering%20for%20Sub-Wavelength%20Particle%20Characterization&rft.jtitle=IEEE%20transactions%20on%20microwave%20theory%20and%20techniques&rft.au=Dey,%20Utpal&rft.date=2022-04-01&rft.volume=70&rft.issue=4&rft.spage=2351&rft.epage=2362&rft.pages=2351-2362&rft.issn=0018-9480&rft.eissn=1557-9670&rft.coden=IETMAB&rft_id=info:doi/10.1109/TMTT.2022.3145014&rft_dat=%3Cproquest_RIE%3E2647427829%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2647427829&rft_id=info:pmid/&rft_ieee_id=9701838&rfr_iscdi=true