Configuration Space Decomposition for Scalable Proxy Collision Checking in Robot Planning and Control

Real-time robot motion planning in complex high-dimensional environments remains an open problem. Motion planning algorithms, and their underlying collision checkers, are crucial to any robot control stack. Collision checking takes up a large portion of the computational time in robot motion plannin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics and automation letters 2022-04, Vol.7 (2), p.3811-3818
Hauptverfasser: Verghese, Mrinal, Das, Nikhil, Zhi, Yuheng, Yip, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3818
container_issue 2
container_start_page 3811
container_title IEEE robotics and automation letters
container_volume 7
creator Verghese, Mrinal
Das, Nikhil
Zhi, Yuheng
Yip, Michael
description Real-time robot motion planning in complex high-dimensional environments remains an open problem. Motion planning algorithms, and their underlying collision checkers, are crucial to any robot control stack. Collision checking takes up a large portion of the computational time in robot motion planning. Existing collision checkers make trade-offs between speed and accuracy and scale poorly to high-dimensional, complex environments. We present a novel space decomposition method using K-Means clustering in the Forward Kinematics space to accelerate proxy collision checking. We train individual configuration space models using Fastron, a kernel perceptron algorithm, on these decomposed subspaces, yielding compact yet highly accurate models that can be queried rapidly and scale better to more complex environments. We demonstrate this new method, called Decomposed Fast Perceptron (D-Fastron), on the 7-DOF Baxter robot producing on average 29× faster collision checks and up to 9.8× faster motion planning compared to state-of-the-art geometric collision checkers.
doi_str_mv 10.1109/LRA.2022.3147458
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9699414</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9699414</ieee_id><sourcerecordid>2629124507</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-870157fd86efc4c38df820fe97563033bfbe5e5d683675b910fcbe33de6b37a63</originalsourceid><addsrcrecordid>eNpNkN9LwzAQx4MoOObeBV8KPm8muSZpH0f9CQPHps8lTS-zs0tq2oH7723dEJ_u-N7ne3d8CblmdMYYTe8Wq_mMU85nwGIVi-SMjDgoNQUl5fm__pJM2nZLKWWCK0jFiGDmna02-6C7yrto3WiD0T0av2t8W_1q1odobXStixqjZfDfhyjzdV21wzD7QPNZuU1UuWjlC99Fy1o7NyjalT3ouuDrK3Jhdd3i5FTH5P3x4S17ni5en16y-WJqAKCbJqp_TNkykWhNbCApbcKpxVQJCRSgsAUKFKVMQCpRpIxaUyBAibIApSWMye1xbxP81x7bLt_6fXD9yZxLnjIeC6p6ih4pE3zbBrR5E6qdDoec0XzIM-_zzIc881OeveXmaKkQ8Q9PZZrGLIYfCvZxjw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2629124507</pqid></control><display><type>article</type><title>Configuration Space Decomposition for Scalable Proxy Collision Checking in Robot Planning and Control</title><source>IEEE Electronic Library (IEL)</source><creator>Verghese, Mrinal ; Das, Nikhil ; Zhi, Yuheng ; Yip, Michael</creator><creatorcontrib>Verghese, Mrinal ; Das, Nikhil ; Zhi, Yuheng ; Yip, Michael</creatorcontrib><description>Real-time robot motion planning in complex high-dimensional environments remains an open problem. Motion planning algorithms, and their underlying collision checkers, are crucial to any robot control stack. Collision checking takes up a large portion of the computational time in robot motion planning. Existing collision checkers make trade-offs between speed and accuracy and scale poorly to high-dimensional, complex environments. We present a novel space decomposition method using K-Means clustering in the Forward Kinematics space to accelerate proxy collision checking. We train individual configuration space models using Fastron, a kernel perceptron algorithm, on these decomposed subspaces, yielding compact yet highly accurate models that can be queried rapidly and scale better to more complex environments. We demonstrate this new method, called Decomposed Fast Perceptron (D-Fastron), on the 7-DOF Baxter robot producing on average 29× faster collision checks and up to 9.8× faster motion planning compared to state-of-the-art geometric collision checkers.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2022.3147458</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Aerospace electronics ; Algorithms ; Checkers ; Cluster analysis ; Clustering ; Clustering algorithms ; Collision avoidance ; Complexity theory ; Computing time ; Configurations ; Decomposition ; Feasibility ; Kinematics ; machine learning ; Motion planning ; Planning ; Robot control ; Robot dynamics ; Robots ; Subspaces ; Transforms ; Vector quantization</subject><ispartof>IEEE robotics and automation letters, 2022-04, Vol.7 (2), p.3811-3818</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-870157fd86efc4c38df820fe97563033bfbe5e5d683675b910fcbe33de6b37a63</citedby><cites>FETCH-LOGICAL-c333t-870157fd86efc4c38df820fe97563033bfbe5e5d683675b910fcbe33de6b37a63</cites><orcidid>0000-0002-5049-5422 ; 0000-0001-9689-0172 ; 0000-0003-4714-3028 ; 0000-0002-6407-2957</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9699414$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9699414$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Verghese, Mrinal</creatorcontrib><creatorcontrib>Das, Nikhil</creatorcontrib><creatorcontrib>Zhi, Yuheng</creatorcontrib><creatorcontrib>Yip, Michael</creatorcontrib><title>Configuration Space Decomposition for Scalable Proxy Collision Checking in Robot Planning and Control</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>Real-time robot motion planning in complex high-dimensional environments remains an open problem. Motion planning algorithms, and their underlying collision checkers, are crucial to any robot control stack. Collision checking takes up a large portion of the computational time in robot motion planning. Existing collision checkers make trade-offs between speed and accuracy and scale poorly to high-dimensional, complex environments. We present a novel space decomposition method using K-Means clustering in the Forward Kinematics space to accelerate proxy collision checking. We train individual configuration space models using Fastron, a kernel perceptron algorithm, on these decomposed subspaces, yielding compact yet highly accurate models that can be queried rapidly and scale better to more complex environments. We demonstrate this new method, called Decomposed Fast Perceptron (D-Fastron), on the 7-DOF Baxter robot producing on average 29× faster collision checks and up to 9.8× faster motion planning compared to state-of-the-art geometric collision checkers.</description><subject>Aerospace electronics</subject><subject>Algorithms</subject><subject>Checkers</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Collision avoidance</subject><subject>Complexity theory</subject><subject>Computing time</subject><subject>Configurations</subject><subject>Decomposition</subject><subject>Feasibility</subject><subject>Kinematics</subject><subject>machine learning</subject><subject>Motion planning</subject><subject>Planning</subject><subject>Robot control</subject><subject>Robot dynamics</subject><subject>Robots</subject><subject>Subspaces</subject><subject>Transforms</subject><subject>Vector quantization</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkN9LwzAQx4MoOObeBV8KPm8muSZpH0f9CQPHps8lTS-zs0tq2oH7723dEJ_u-N7ne3d8CblmdMYYTe8Wq_mMU85nwGIVi-SMjDgoNQUl5fm__pJM2nZLKWWCK0jFiGDmna02-6C7yrto3WiD0T0av2t8W_1q1odobXStixqjZfDfhyjzdV21wzD7QPNZuU1UuWjlC99Fy1o7NyjalT3ouuDrK3Jhdd3i5FTH5P3x4S17ni5en16y-WJqAKCbJqp_TNkykWhNbCApbcKpxVQJCRSgsAUKFKVMQCpRpIxaUyBAibIApSWMye1xbxP81x7bLt_6fXD9yZxLnjIeC6p6ih4pE3zbBrR5E6qdDoec0XzIM-_zzIc881OeveXmaKkQ8Q9PZZrGLIYfCvZxjw</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Verghese, Mrinal</creator><creator>Das, Nikhil</creator><creator>Zhi, Yuheng</creator><creator>Yip, Michael</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5049-5422</orcidid><orcidid>https://orcid.org/0000-0001-9689-0172</orcidid><orcidid>https://orcid.org/0000-0003-4714-3028</orcidid><orcidid>https://orcid.org/0000-0002-6407-2957</orcidid></search><sort><creationdate>20220401</creationdate><title>Configuration Space Decomposition for Scalable Proxy Collision Checking in Robot Planning and Control</title><author>Verghese, Mrinal ; Das, Nikhil ; Zhi, Yuheng ; Yip, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-870157fd86efc4c38df820fe97563033bfbe5e5d683675b910fcbe33de6b37a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aerospace electronics</topic><topic>Algorithms</topic><topic>Checkers</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Collision avoidance</topic><topic>Complexity theory</topic><topic>Computing time</topic><topic>Configurations</topic><topic>Decomposition</topic><topic>Feasibility</topic><topic>Kinematics</topic><topic>machine learning</topic><topic>Motion planning</topic><topic>Planning</topic><topic>Robot control</topic><topic>Robot dynamics</topic><topic>Robots</topic><topic>Subspaces</topic><topic>Transforms</topic><topic>Vector quantization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Verghese, Mrinal</creatorcontrib><creatorcontrib>Das, Nikhil</creatorcontrib><creatorcontrib>Zhi, Yuheng</creatorcontrib><creatorcontrib>Yip, Michael</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Verghese, Mrinal</au><au>Das, Nikhil</au><au>Zhi, Yuheng</au><au>Yip, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Configuration Space Decomposition for Scalable Proxy Collision Checking in Robot Planning and Control</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>7</volume><issue>2</issue><spage>3811</spage><epage>3818</epage><pages>3811-3818</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>Real-time robot motion planning in complex high-dimensional environments remains an open problem. Motion planning algorithms, and their underlying collision checkers, are crucial to any robot control stack. Collision checking takes up a large portion of the computational time in robot motion planning. Existing collision checkers make trade-offs between speed and accuracy and scale poorly to high-dimensional, complex environments. We present a novel space decomposition method using K-Means clustering in the Forward Kinematics space to accelerate proxy collision checking. We train individual configuration space models using Fastron, a kernel perceptron algorithm, on these decomposed subspaces, yielding compact yet highly accurate models that can be queried rapidly and scale better to more complex environments. We demonstrate this new method, called Decomposed Fast Perceptron (D-Fastron), on the 7-DOF Baxter robot producing on average 29× faster collision checks and up to 9.8× faster motion planning compared to state-of-the-art geometric collision checkers.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2022.3147458</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-5049-5422</orcidid><orcidid>https://orcid.org/0000-0001-9689-0172</orcidid><orcidid>https://orcid.org/0000-0003-4714-3028</orcidid><orcidid>https://orcid.org/0000-0002-6407-2957</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2377-3766
ispartof IEEE robotics and automation letters, 2022-04, Vol.7 (2), p.3811-3818
issn 2377-3766
2377-3766
language eng
recordid cdi_ieee_primary_9699414
source IEEE Electronic Library (IEL)
subjects Aerospace electronics
Algorithms
Checkers
Cluster analysis
Clustering
Clustering algorithms
Collision avoidance
Complexity theory
Computing time
Configurations
Decomposition
Feasibility
Kinematics
machine learning
Motion planning
Planning
Robot control
Robot dynamics
Robots
Subspaces
Transforms
Vector quantization
title Configuration Space Decomposition for Scalable Proxy Collision Checking in Robot Planning and Control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T13%3A08%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Configuration%20Space%20Decomposition%20for%20Scalable%20Proxy%20Collision%20Checking%20in%20Robot%20Planning%20and%20Control&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Verghese,%20Mrinal&rft.date=2022-04-01&rft.volume=7&rft.issue=2&rft.spage=3811&rft.epage=3818&rft.pages=3811-3818&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2022.3147458&rft_dat=%3Cproquest_RIE%3E2629124507%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2629124507&rft_id=info:pmid/&rft_ieee_id=9699414&rfr_iscdi=true