Configuration Space Decomposition for Scalable Proxy Collision Checking in Robot Planning and Control
Real-time robot motion planning in complex high-dimensional environments remains an open problem. Motion planning algorithms, and their underlying collision checkers, are crucial to any robot control stack. Collision checking takes up a large portion of the computational time in robot motion plannin...
Gespeichert in:
Veröffentlicht in: | IEEE robotics and automation letters 2022-04, Vol.7 (2), p.3811-3818 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3818 |
---|---|
container_issue | 2 |
container_start_page | 3811 |
container_title | IEEE robotics and automation letters |
container_volume | 7 |
creator | Verghese, Mrinal Das, Nikhil Zhi, Yuheng Yip, Michael |
description | Real-time robot motion planning in complex high-dimensional environments remains an open problem. Motion planning algorithms, and their underlying collision checkers, are crucial to any robot control stack. Collision checking takes up a large portion of the computational time in robot motion planning. Existing collision checkers make trade-offs between speed and accuracy and scale poorly to high-dimensional, complex environments. We present a novel space decomposition method using K-Means clustering in the Forward Kinematics space to accelerate proxy collision checking. We train individual configuration space models using Fastron, a kernel perceptron algorithm, on these decomposed subspaces, yielding compact yet highly accurate models that can be queried rapidly and scale better to more complex environments. We demonstrate this new method, called Decomposed Fast Perceptron (D-Fastron), on the 7-DOF Baxter robot producing on average 29× faster collision checks and up to 9.8× faster motion planning compared to state-of-the-art geometric collision checkers. |
doi_str_mv | 10.1109/LRA.2022.3147458 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9699414</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9699414</ieee_id><sourcerecordid>2629124507</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-870157fd86efc4c38df820fe97563033bfbe5e5d683675b910fcbe33de6b37a63</originalsourceid><addsrcrecordid>eNpNkN9LwzAQx4MoOObeBV8KPm8muSZpH0f9CQPHps8lTS-zs0tq2oH7723dEJ_u-N7ne3d8CblmdMYYTe8Wq_mMU85nwGIVi-SMjDgoNQUl5fm__pJM2nZLKWWCK0jFiGDmna02-6C7yrto3WiD0T0av2t8W_1q1odobXStixqjZfDfhyjzdV21wzD7QPNZuU1UuWjlC99Fy1o7NyjalT3ouuDrK3Jhdd3i5FTH5P3x4S17ni5en16y-WJqAKCbJqp_TNkykWhNbCApbcKpxVQJCRSgsAUKFKVMQCpRpIxaUyBAibIApSWMye1xbxP81x7bLt_6fXD9yZxLnjIeC6p6ih4pE3zbBrR5E6qdDoec0XzIM-_zzIc881OeveXmaKkQ8Q9PZZrGLIYfCvZxjw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2629124507</pqid></control><display><type>article</type><title>Configuration Space Decomposition for Scalable Proxy Collision Checking in Robot Planning and Control</title><source>IEEE Electronic Library (IEL)</source><creator>Verghese, Mrinal ; Das, Nikhil ; Zhi, Yuheng ; Yip, Michael</creator><creatorcontrib>Verghese, Mrinal ; Das, Nikhil ; Zhi, Yuheng ; Yip, Michael</creatorcontrib><description>Real-time robot motion planning in complex high-dimensional environments remains an open problem. Motion planning algorithms, and their underlying collision checkers, are crucial to any robot control stack. Collision checking takes up a large portion of the computational time in robot motion planning. Existing collision checkers make trade-offs between speed and accuracy and scale poorly to high-dimensional, complex environments. We present a novel space decomposition method using K-Means clustering in the Forward Kinematics space to accelerate proxy collision checking. We train individual configuration space models using Fastron, a kernel perceptron algorithm, on these decomposed subspaces, yielding compact yet highly accurate models that can be queried rapidly and scale better to more complex environments. We demonstrate this new method, called Decomposed Fast Perceptron (D-Fastron), on the 7-DOF Baxter robot producing on average 29× faster collision checks and up to 9.8× faster motion planning compared to state-of-the-art geometric collision checkers.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2022.3147458</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Aerospace electronics ; Algorithms ; Checkers ; Cluster analysis ; Clustering ; Clustering algorithms ; Collision avoidance ; Complexity theory ; Computing time ; Configurations ; Decomposition ; Feasibility ; Kinematics ; machine learning ; Motion planning ; Planning ; Robot control ; Robot dynamics ; Robots ; Subspaces ; Transforms ; Vector quantization</subject><ispartof>IEEE robotics and automation letters, 2022-04, Vol.7 (2), p.3811-3818</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-870157fd86efc4c38df820fe97563033bfbe5e5d683675b910fcbe33de6b37a63</citedby><cites>FETCH-LOGICAL-c333t-870157fd86efc4c38df820fe97563033bfbe5e5d683675b910fcbe33de6b37a63</cites><orcidid>0000-0002-5049-5422 ; 0000-0001-9689-0172 ; 0000-0003-4714-3028 ; 0000-0002-6407-2957</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9699414$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9699414$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Verghese, Mrinal</creatorcontrib><creatorcontrib>Das, Nikhil</creatorcontrib><creatorcontrib>Zhi, Yuheng</creatorcontrib><creatorcontrib>Yip, Michael</creatorcontrib><title>Configuration Space Decomposition for Scalable Proxy Collision Checking in Robot Planning and Control</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>Real-time robot motion planning in complex high-dimensional environments remains an open problem. Motion planning algorithms, and their underlying collision checkers, are crucial to any robot control stack. Collision checking takes up a large portion of the computational time in robot motion planning. Existing collision checkers make trade-offs between speed and accuracy and scale poorly to high-dimensional, complex environments. We present a novel space decomposition method using K-Means clustering in the Forward Kinematics space to accelerate proxy collision checking. We train individual configuration space models using Fastron, a kernel perceptron algorithm, on these decomposed subspaces, yielding compact yet highly accurate models that can be queried rapidly and scale better to more complex environments. We demonstrate this new method, called Decomposed Fast Perceptron (D-Fastron), on the 7-DOF Baxter robot producing on average 29× faster collision checks and up to 9.8× faster motion planning compared to state-of-the-art geometric collision checkers.</description><subject>Aerospace electronics</subject><subject>Algorithms</subject><subject>Checkers</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Collision avoidance</subject><subject>Complexity theory</subject><subject>Computing time</subject><subject>Configurations</subject><subject>Decomposition</subject><subject>Feasibility</subject><subject>Kinematics</subject><subject>machine learning</subject><subject>Motion planning</subject><subject>Planning</subject><subject>Robot control</subject><subject>Robot dynamics</subject><subject>Robots</subject><subject>Subspaces</subject><subject>Transforms</subject><subject>Vector quantization</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkN9LwzAQx4MoOObeBV8KPm8muSZpH0f9CQPHps8lTS-zs0tq2oH7723dEJ_u-N7ne3d8CblmdMYYTe8Wq_mMU85nwGIVi-SMjDgoNQUl5fm__pJM2nZLKWWCK0jFiGDmna02-6C7yrto3WiD0T0av2t8W_1q1odobXStixqjZfDfhyjzdV21wzD7QPNZuU1UuWjlC99Fy1o7NyjalT3ouuDrK3Jhdd3i5FTH5P3x4S17ni5en16y-WJqAKCbJqp_TNkykWhNbCApbcKpxVQJCRSgsAUKFKVMQCpRpIxaUyBAibIApSWMye1xbxP81x7bLt_6fXD9yZxLnjIeC6p6ih4pE3zbBrR5E6qdDoec0XzIM-_zzIc881OeveXmaKkQ8Q9PZZrGLIYfCvZxjw</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Verghese, Mrinal</creator><creator>Das, Nikhil</creator><creator>Zhi, Yuheng</creator><creator>Yip, Michael</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5049-5422</orcidid><orcidid>https://orcid.org/0000-0001-9689-0172</orcidid><orcidid>https://orcid.org/0000-0003-4714-3028</orcidid><orcidid>https://orcid.org/0000-0002-6407-2957</orcidid></search><sort><creationdate>20220401</creationdate><title>Configuration Space Decomposition for Scalable Proxy Collision Checking in Robot Planning and Control</title><author>Verghese, Mrinal ; Das, Nikhil ; Zhi, Yuheng ; Yip, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-870157fd86efc4c38df820fe97563033bfbe5e5d683675b910fcbe33de6b37a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aerospace electronics</topic><topic>Algorithms</topic><topic>Checkers</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Collision avoidance</topic><topic>Complexity theory</topic><topic>Computing time</topic><topic>Configurations</topic><topic>Decomposition</topic><topic>Feasibility</topic><topic>Kinematics</topic><topic>machine learning</topic><topic>Motion planning</topic><topic>Planning</topic><topic>Robot control</topic><topic>Robot dynamics</topic><topic>Robots</topic><topic>Subspaces</topic><topic>Transforms</topic><topic>Vector quantization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Verghese, Mrinal</creatorcontrib><creatorcontrib>Das, Nikhil</creatorcontrib><creatorcontrib>Zhi, Yuheng</creatorcontrib><creatorcontrib>Yip, Michael</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Verghese, Mrinal</au><au>Das, Nikhil</au><au>Zhi, Yuheng</au><au>Yip, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Configuration Space Decomposition for Scalable Proxy Collision Checking in Robot Planning and Control</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>7</volume><issue>2</issue><spage>3811</spage><epage>3818</epage><pages>3811-3818</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>Real-time robot motion planning in complex high-dimensional environments remains an open problem. Motion planning algorithms, and their underlying collision checkers, are crucial to any robot control stack. Collision checking takes up a large portion of the computational time in robot motion planning. Existing collision checkers make trade-offs between speed and accuracy and scale poorly to high-dimensional, complex environments. We present a novel space decomposition method using K-Means clustering in the Forward Kinematics space to accelerate proxy collision checking. We train individual configuration space models using Fastron, a kernel perceptron algorithm, on these decomposed subspaces, yielding compact yet highly accurate models that can be queried rapidly and scale better to more complex environments. We demonstrate this new method, called Decomposed Fast Perceptron (D-Fastron), on the 7-DOF Baxter robot producing on average 29× faster collision checks and up to 9.8× faster motion planning compared to state-of-the-art geometric collision checkers.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2022.3147458</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-5049-5422</orcidid><orcidid>https://orcid.org/0000-0001-9689-0172</orcidid><orcidid>https://orcid.org/0000-0003-4714-3028</orcidid><orcidid>https://orcid.org/0000-0002-6407-2957</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2377-3766 |
ispartof | IEEE robotics and automation letters, 2022-04, Vol.7 (2), p.3811-3818 |
issn | 2377-3766 2377-3766 |
language | eng |
recordid | cdi_ieee_primary_9699414 |
source | IEEE Electronic Library (IEL) |
subjects | Aerospace electronics Algorithms Checkers Cluster analysis Clustering Clustering algorithms Collision avoidance Complexity theory Computing time Configurations Decomposition Feasibility Kinematics machine learning Motion planning Planning Robot control Robot dynamics Robots Subspaces Transforms Vector quantization |
title | Configuration Space Decomposition for Scalable Proxy Collision Checking in Robot Planning and Control |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T13%3A08%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Configuration%20Space%20Decomposition%20for%20Scalable%20Proxy%20Collision%20Checking%20in%20Robot%20Planning%20and%20Control&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Verghese,%20Mrinal&rft.date=2022-04-01&rft.volume=7&rft.issue=2&rft.spage=3811&rft.epage=3818&rft.pages=3811-3818&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2022.3147458&rft_dat=%3Cproquest_RIE%3E2629124507%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2629124507&rft_id=info:pmid/&rft_ieee_id=9699414&rfr_iscdi=true |