Granularity-Aware Area Prototypical Network With Bimargin Loss for Few Shot Relation Classification

Relation Classification is one of the most important tasks in text mining. Previous methods either require large-scale manually-annotated data or rely on distant supervision approaches which suffer from the long-tail problem. To reduce the expensive manually-annotating cost and solve the long-tail p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on knowledge and data engineering 2023-05, Vol.35 (5), p.4852-4866
Hauptverfasser: Ren, Haopeng, Cai, Yi, Lau, Raymond Y.K., Leung, Ho-fung, Li, Qing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4866
container_issue 5
container_start_page 4852
container_title IEEE transactions on knowledge and data engineering
container_volume 35
creator Ren, Haopeng
Cai, Yi
Lau, Raymond Y.K.
Leung, Ho-fung
Li, Qing
description Relation Classification is one of the most important tasks in text mining. Previous methods either require large-scale manually-annotated data or rely on distant supervision approaches which suffer from the long-tail problem. To reduce the expensive manually-annotating cost and solve the long-tail problem, prototypical networks are widely used in few-shot RC tasks. Despite their remarkable performance, current prototypical networks ignore the different granularities of relations, which degrades the classification performance dramatically. Moreover, the optimization of current prototypical networks simply relies on the cross-entropy loss, which cannot consider the intra-relation compactness and the dispersion among relations in a semantic space. It is not robust enough for the current prototypical network in real-world and complicated scenarios. In this paper, we propose an area prototypical network with a granularity-aware measurement, aiming to consider the different granularities of relations. Each relation is represented as an area whose width can reflect the granularity level of relation. Moreover, to improve the robustness, bimargin loss is designed to force area prototypical network to improve the intra-relation compactness and inter-relation dispersion for the feature representation in a semantic space. Extensive experiments on two public datasets are conducted and evaluate the effectiveness of our proposed model.
doi_str_mv 10.1109/TKDE.2022.3147455
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9699028</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9699028</ieee_id><sourcerecordid>2795803148</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-c1927ef15ab4f3ef13d47bd1fcbf5019fe0bf02998d574020743236de12809e53</originalsourceid><addsrcrecordid>eNo9kM1OAjEUhRujiYg-gHHTxPVgf2m7RAQ0EjWKcdl0ZloZHSm2JYS3txOIq3tucs69OR8AlxgNMEbqZvF4NxkQRMiAYiYY50eghzmXBcEKH2eNGC4YZeIUnMX4hRCSQuIeqGbBrDatCU3aFaOtCRaOgjXwJfjk027dVKaFTzZtffiGH01awtvmx4TPZgXnPkbofIBTu4VvS5_gq21NavwKjlsTY-NyuFvPwYkzbbQXh9kH79PJYnxfzJ9nD-PRvKgoHaaiwooI6zA3JXM0C1ozUdbYVaXjCCtnUekQUUrWXDBEkGCU0GFtMZFIWU774Hp_dx3878bGpL_8JqzyS02E4hJlNDK78N5VhVwgWKfXoau00xjpjqXuWOqOpT6wzJmrfaax1v771VApRCT9A5k6cDY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2795803148</pqid></control><display><type>article</type><title>Granularity-Aware Area Prototypical Network With Bimargin Loss for Few Shot Relation Classification</title><source>IEEE Electronic Library (IEL)</source><creator>Ren, Haopeng ; Cai, Yi ; Lau, Raymond Y.K. ; Leung, Ho-fung ; Li, Qing</creator><creatorcontrib>Ren, Haopeng ; Cai, Yi ; Lau, Raymond Y.K. ; Leung, Ho-fung ; Li, Qing</creatorcontrib><description>Relation Classification is one of the most important tasks in text mining. Previous methods either require large-scale manually-annotated data or rely on distant supervision approaches which suffer from the long-tail problem. To reduce the expensive manually-annotating cost and solve the long-tail problem, prototypical networks are widely used in few-shot RC tasks. Despite their remarkable performance, current prototypical networks ignore the different granularities of relations, which degrades the classification performance dramatically. Moreover, the optimization of current prototypical networks simply relies on the cross-entropy loss, which cannot consider the intra-relation compactness and the dispersion among relations in a semantic space. It is not robust enough for the current prototypical network in real-world and complicated scenarios. In this paper, we propose an area prototypical network with a granularity-aware measurement, aiming to consider the different granularities of relations. Each relation is represented as an area whose width can reflect the granularity level of relation. Moreover, to improve the robustness, bimargin loss is designed to force area prototypical network to improve the intra-relation compactness and inter-relation dispersion for the feature representation in a semantic space. Extensive experiments on two public datasets are conducted and evaluate the effectiveness of our proposed model.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2022.3147455</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Classification ; Computational modeling ; Data mining ; Data models ; Dispersion ; few-shot learning ; metric learning ; Networks ; Optimization ; Performance evaluation ; Prototypes ; prototypical network ; Relation classification ; Robustness ; Semantics ; Task analysis ; Training</subject><ispartof>IEEE transactions on knowledge and data engineering, 2023-05, Vol.35 (5), p.4852-4866</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-c1927ef15ab4f3ef13d47bd1fcbf5019fe0bf02998d574020743236de12809e53</citedby><cites>FETCH-LOGICAL-c336t-c1927ef15ab4f3ef13d47bd1fcbf5019fe0bf02998d574020743236de12809e53</cites><orcidid>0000-0003-3370-471X ; 0000-0003-4914-2934 ; 0000-0002-5751-4550 ; 0000-0002-1767-789X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9699028$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9699028$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ren, Haopeng</creatorcontrib><creatorcontrib>Cai, Yi</creatorcontrib><creatorcontrib>Lau, Raymond Y.K.</creatorcontrib><creatorcontrib>Leung, Ho-fung</creatorcontrib><creatorcontrib>Li, Qing</creatorcontrib><title>Granularity-Aware Area Prototypical Network With Bimargin Loss for Few Shot Relation Classification</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>Relation Classification is one of the most important tasks in text mining. Previous methods either require large-scale manually-annotated data or rely on distant supervision approaches which suffer from the long-tail problem. To reduce the expensive manually-annotating cost and solve the long-tail problem, prototypical networks are widely used in few-shot RC tasks. Despite their remarkable performance, current prototypical networks ignore the different granularities of relations, which degrades the classification performance dramatically. Moreover, the optimization of current prototypical networks simply relies on the cross-entropy loss, which cannot consider the intra-relation compactness and the dispersion among relations in a semantic space. It is not robust enough for the current prototypical network in real-world and complicated scenarios. In this paper, we propose an area prototypical network with a granularity-aware measurement, aiming to consider the different granularities of relations. Each relation is represented as an area whose width can reflect the granularity level of relation. Moreover, to improve the robustness, bimargin loss is designed to force area prototypical network to improve the intra-relation compactness and inter-relation dispersion for the feature representation in a semantic space. Extensive experiments on two public datasets are conducted and evaluate the effectiveness of our proposed model.</description><subject>Classification</subject><subject>Computational modeling</subject><subject>Data mining</subject><subject>Data models</subject><subject>Dispersion</subject><subject>few-shot learning</subject><subject>metric learning</subject><subject>Networks</subject><subject>Optimization</subject><subject>Performance evaluation</subject><subject>Prototypes</subject><subject>prototypical network</subject><subject>Relation classification</subject><subject>Robustness</subject><subject>Semantics</subject><subject>Task analysis</subject><subject>Training</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1OAjEUhRujiYg-gHHTxPVgf2m7RAQ0EjWKcdl0ZloZHSm2JYS3txOIq3tucs69OR8AlxgNMEbqZvF4NxkQRMiAYiYY50eghzmXBcEKH2eNGC4YZeIUnMX4hRCSQuIeqGbBrDatCU3aFaOtCRaOgjXwJfjk027dVKaFTzZtffiGH01awtvmx4TPZgXnPkbofIBTu4VvS5_gq21NavwKjlsTY-NyuFvPwYkzbbQXh9kH79PJYnxfzJ9nD-PRvKgoHaaiwooI6zA3JXM0C1ozUdbYVaXjCCtnUekQUUrWXDBEkGCU0GFtMZFIWU774Hp_dx3878bGpL_8JqzyS02E4hJlNDK78N5VhVwgWKfXoau00xjpjqXuWOqOpT6wzJmrfaax1v771VApRCT9A5k6cDY</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Ren, Haopeng</creator><creator>Cai, Yi</creator><creator>Lau, Raymond Y.K.</creator><creator>Leung, Ho-fung</creator><creator>Li, Qing</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3370-471X</orcidid><orcidid>https://orcid.org/0000-0003-4914-2934</orcidid><orcidid>https://orcid.org/0000-0002-5751-4550</orcidid><orcidid>https://orcid.org/0000-0002-1767-789X</orcidid></search><sort><creationdate>20230501</creationdate><title>Granularity-Aware Area Prototypical Network With Bimargin Loss for Few Shot Relation Classification</title><author>Ren, Haopeng ; Cai, Yi ; Lau, Raymond Y.K. ; Leung, Ho-fung ; Li, Qing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-c1927ef15ab4f3ef13d47bd1fcbf5019fe0bf02998d574020743236de12809e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Classification</topic><topic>Computational modeling</topic><topic>Data mining</topic><topic>Data models</topic><topic>Dispersion</topic><topic>few-shot learning</topic><topic>metric learning</topic><topic>Networks</topic><topic>Optimization</topic><topic>Performance evaluation</topic><topic>Prototypes</topic><topic>prototypical network</topic><topic>Relation classification</topic><topic>Robustness</topic><topic>Semantics</topic><topic>Task analysis</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ren, Haopeng</creatorcontrib><creatorcontrib>Cai, Yi</creatorcontrib><creatorcontrib>Lau, Raymond Y.K.</creatorcontrib><creatorcontrib>Leung, Ho-fung</creatorcontrib><creatorcontrib>Li, Qing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ren, Haopeng</au><au>Cai, Yi</au><au>Lau, Raymond Y.K.</au><au>Leung, Ho-fung</au><au>Li, Qing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Granularity-Aware Area Prototypical Network With Bimargin Loss for Few Shot Relation Classification</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>35</volume><issue>5</issue><spage>4852</spage><epage>4866</epage><pages>4852-4866</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>Relation Classification is one of the most important tasks in text mining. Previous methods either require large-scale manually-annotated data or rely on distant supervision approaches which suffer from the long-tail problem. To reduce the expensive manually-annotating cost and solve the long-tail problem, prototypical networks are widely used in few-shot RC tasks. Despite their remarkable performance, current prototypical networks ignore the different granularities of relations, which degrades the classification performance dramatically. Moreover, the optimization of current prototypical networks simply relies on the cross-entropy loss, which cannot consider the intra-relation compactness and the dispersion among relations in a semantic space. It is not robust enough for the current prototypical network in real-world and complicated scenarios. In this paper, we propose an area prototypical network with a granularity-aware measurement, aiming to consider the different granularities of relations. Each relation is represented as an area whose width can reflect the granularity level of relation. Moreover, to improve the robustness, bimargin loss is designed to force area prototypical network to improve the intra-relation compactness and inter-relation dispersion for the feature representation in a semantic space. Extensive experiments on two public datasets are conducted and evaluate the effectiveness of our proposed model.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TKDE.2022.3147455</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-3370-471X</orcidid><orcidid>https://orcid.org/0000-0003-4914-2934</orcidid><orcidid>https://orcid.org/0000-0002-5751-4550</orcidid><orcidid>https://orcid.org/0000-0002-1767-789X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1041-4347
ispartof IEEE transactions on knowledge and data engineering, 2023-05, Vol.35 (5), p.4852-4866
issn 1041-4347
1558-2191
language eng
recordid cdi_ieee_primary_9699028
source IEEE Electronic Library (IEL)
subjects Classification
Computational modeling
Data mining
Data models
Dispersion
few-shot learning
metric learning
Networks
Optimization
Performance evaluation
Prototypes
prototypical network
Relation classification
Robustness
Semantics
Task analysis
Training
title Granularity-Aware Area Prototypical Network With Bimargin Loss for Few Shot Relation Classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T05%3A57%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Granularity-Aware%20Area%20Prototypical%20Network%20With%20Bimargin%20Loss%20for%20Few%20Shot%20Relation%20Classification&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Ren,%20Haopeng&rft.date=2023-05-01&rft.volume=35&rft.issue=5&rft.spage=4852&rft.epage=4866&rft.pages=4852-4866&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2022.3147455&rft_dat=%3Cproquest_RIE%3E2795803148%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2795803148&rft_id=info:pmid/&rft_ieee_id=9699028&rfr_iscdi=true