Measuring and Modeling Single Event Transients in 12-nm Inverters

In this article, we present a unique method of measuring single-event transient (SET) sensitivity in 12-nm FinFET technology. A test structure is presented that approximately measures the length of SETs using flip-flop shift registers with clock inputs driven by an inverter chain. The test structure...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on nuclear science 2022-03, Vol.69 (3), p.414-421
Hauptverfasser: Agarwal, Sapan, Clark, Lawrence T., Youngsciortino, Clifford, Ng, Garrick, Black, Dolores, Cannon, Matthew, Black, Jeffrey, Quinn, Heather, Brunhaver, John, Barnaby, Hugh, Manuel, Jack, Blansett, Ethan, Marinella, Matthew J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 421
container_issue 3
container_start_page 414
container_title IEEE transactions on nuclear science
container_volume 69
creator Agarwal, Sapan
Clark, Lawrence T.
Youngsciortino, Clifford
Ng, Garrick
Black, Dolores
Cannon, Matthew
Black, Jeffrey
Quinn, Heather
Brunhaver, John
Barnaby, Hugh
Manuel, Jack
Blansett, Ethan
Marinella, Matthew J.
description In this article, we present a unique method of measuring single-event transient (SET) sensitivity in 12-nm FinFET technology. A test structure is presented that approximately measures the length of SETs using flip-flop shift registers with clock inputs driven by an inverter chain. The test structure was irradiated with ions at linear energy transfers (LETs) of 4.0, 5.6, 10.4, and 17.9 MeV-cm 2 /mg, and the cross sections of SET pulses measured down to 12.7 ps are presented. The experimental results are interpreted using a modeling methodology that combines TCAD and radiation effect simulations to capture the SET physics, and SPICE simulations to model the SETs in a circuit. The modeling shows that only ion strikes on the fin structure of the transistor would result in enough charge collected to produce SETs, while strikes in the subfin and substrate do not result in enough charge collected to produce measurable transients. Comparisons of the cumulative cross sections obtained from the experiment and from the simulations validate the modeling methodology presented.
doi_str_mv 10.1109/TNS.2022.3147745
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9696339</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9696339</ieee_id><sourcerecordid>2639933446</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-d3b62aae6cee0cf863fb980492ab2e4c7e9d33b4df0cfaf851b419612929d7043</originalsourceid><addsrcrecordid>eNo9kM1PwkAQxTdGExG9m3hp9Fzc73aOhKCSgB7A82a7nWoJbHG3kPjfuwTiZWZe5vcmk0fIPaMjxig8r96XI045Hwkmi0KqCzJgSpU5U0V5SQaUsjIHCXBNbmJcJykVVQMyXqCN-9D6r8z6Olt0NW6OYpnKBrPpAX2frYL1sU1TzFqfMZ77bTbzBww9hnhLrhq7iXh37kPy-TJdTd7y-cfrbDKe505o2ue1qDS3FrVDpK4ptWgqKKkEbiuO0hUItRCVrJu0tU2pWCUZaMaBQ11QKYbk8XS3i31romt7dN-u8x5db1ipJGiVoKcTtAvdzx5jb9bdPvj0l-FaAAghpU4UPVEudDEGbMwutFsbfg2j5pimSWmaY5rmnGayPJwsLSL-46BBCwHiD42ebwo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2639933446</pqid></control><display><type>article</type><title>Measuring and Modeling Single Event Transients in 12-nm Inverters</title><source>IEEE Electronic Library (IEL)</source><creator>Agarwal, Sapan ; Clark, Lawrence T. ; Youngsciortino, Clifford ; Ng, Garrick ; Black, Dolores ; Cannon, Matthew ; Black, Jeffrey ; Quinn, Heather ; Brunhaver, John ; Barnaby, Hugh ; Manuel, Jack ; Blansett, Ethan ; Marinella, Matthew J.</creator><creatorcontrib>Agarwal, Sapan ; Clark, Lawrence T. ; Youngsciortino, Clifford ; Ng, Garrick ; Black, Dolores ; Cannon, Matthew ; Black, Jeffrey ; Quinn, Heather ; Brunhaver, John ; Barnaby, Hugh ; Manuel, Jack ; Blansett, Ethan ; Marinella, Matthew J.</creatorcontrib><description>In this article, we present a unique method of measuring single-event transient (SET) sensitivity in 12-nm FinFET technology. A test structure is presented that approximately measures the length of SETs using flip-flop shift registers with clock inputs driven by an inverter chain. The test structure was irradiated with ions at linear energy transfers (LETs) of 4.0, 5.6, 10.4, and 17.9 MeV-cm 2 /mg, and the cross sections of SET pulses measured down to 12.7 ps are presented. The experimental results are interpreted using a modeling methodology that combines TCAD and radiation effect simulations to capture the SET physics, and SPICE simulations to model the SETs in a circuit. The modeling shows that only ion strikes on the fin structure of the transistor would result in enough charge collected to produce SETs, while strikes in the subfin and substrate do not result in enough charge collected to produce measurable transients. Comparisons of the cumulative cross sections obtained from the experiment and from the simulations validate the modeling methodology presented.</description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/TNS.2022.3147745</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Circuits ; Clocks ; Cross-sections ; FinFET ; Flip-flops ; Integrated circuit modeling ; Inverters ; Measurement methods ; modeling ; Modelling ; Radiation ; Shift registers ; Simulation ; single event transient (SET) ; soft-error ; Solid modeling ; Strikes ; Substrates ; technology CAD ; Transient analysis ; Transistors</subject><ispartof>IEEE transactions on nuclear science, 2022-03, Vol.69 (3), p.414-421</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-d3b62aae6cee0cf863fb980492ab2e4c7e9d33b4df0cfaf851b419612929d7043</citedby><cites>FETCH-LOGICAL-c360t-d3b62aae6cee0cf863fb980492ab2e4c7e9d33b4df0cfaf851b419612929d7043</cites><orcidid>0000-0002-5282-3506 ; 0000-0003-0378-7622 ; 0000-0001-7741-6512 ; 0000-0003-4690-9503 ; 0000-0002-6537-1836 ; 0000-0003-3058-7992 ; 0000-0002-8136-1849 ; 0000-0002-2522-0451 ; 0000-0002-8594-4670 ; 0000-0002-3676-6986 ; 0000000225220451 ; 0000000236766986 ; 0000000252823506 ; 0000000346909503 ; 0000000265371836 ; 0000000281361849 ; 0000000177416512 ; 0000000303787622 ; 0000000330587992 ; 0000000285944670</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9696339$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1854965$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Agarwal, Sapan</creatorcontrib><creatorcontrib>Clark, Lawrence T.</creatorcontrib><creatorcontrib>Youngsciortino, Clifford</creatorcontrib><creatorcontrib>Ng, Garrick</creatorcontrib><creatorcontrib>Black, Dolores</creatorcontrib><creatorcontrib>Cannon, Matthew</creatorcontrib><creatorcontrib>Black, Jeffrey</creatorcontrib><creatorcontrib>Quinn, Heather</creatorcontrib><creatorcontrib>Brunhaver, John</creatorcontrib><creatorcontrib>Barnaby, Hugh</creatorcontrib><creatorcontrib>Manuel, Jack</creatorcontrib><creatorcontrib>Blansett, Ethan</creatorcontrib><creatorcontrib>Marinella, Matthew J.</creatorcontrib><title>Measuring and Modeling Single Event Transients in 12-nm Inverters</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><description>In this article, we present a unique method of measuring single-event transient (SET) sensitivity in 12-nm FinFET technology. A test structure is presented that approximately measures the length of SETs using flip-flop shift registers with clock inputs driven by an inverter chain. The test structure was irradiated with ions at linear energy transfers (LETs) of 4.0, 5.6, 10.4, and 17.9 MeV-cm 2 /mg, and the cross sections of SET pulses measured down to 12.7 ps are presented. The experimental results are interpreted using a modeling methodology that combines TCAD and radiation effect simulations to capture the SET physics, and SPICE simulations to model the SETs in a circuit. The modeling shows that only ion strikes on the fin structure of the transistor would result in enough charge collected to produce SETs, while strikes in the subfin and substrate do not result in enough charge collected to produce measurable transients. Comparisons of the cumulative cross sections obtained from the experiment and from the simulations validate the modeling methodology presented.</description><subject>Circuits</subject><subject>Clocks</subject><subject>Cross-sections</subject><subject>FinFET</subject><subject>Flip-flops</subject><subject>Integrated circuit modeling</subject><subject>Inverters</subject><subject>Measurement methods</subject><subject>modeling</subject><subject>Modelling</subject><subject>Radiation</subject><subject>Shift registers</subject><subject>Simulation</subject><subject>single event transient (SET)</subject><subject>soft-error</subject><subject>Solid modeling</subject><subject>Strikes</subject><subject>Substrates</subject><subject>technology CAD</subject><subject>Transient analysis</subject><subject>Transistors</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kM1PwkAQxTdGExG9m3hp9Fzc73aOhKCSgB7A82a7nWoJbHG3kPjfuwTiZWZe5vcmk0fIPaMjxig8r96XI045Hwkmi0KqCzJgSpU5U0V5SQaUsjIHCXBNbmJcJykVVQMyXqCN-9D6r8z6Olt0NW6OYpnKBrPpAX2frYL1sU1TzFqfMZ77bTbzBww9hnhLrhq7iXh37kPy-TJdTd7y-cfrbDKe505o2ue1qDS3FrVDpK4ptWgqKKkEbiuO0hUItRCVrJu0tU2pWCUZaMaBQ11QKYbk8XS3i31romt7dN-u8x5db1ipJGiVoKcTtAvdzx5jb9bdPvj0l-FaAAghpU4UPVEudDEGbMwutFsbfg2j5pimSWmaY5rmnGayPJwsLSL-46BBCwHiD42ebwo</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Agarwal, Sapan</creator><creator>Clark, Lawrence T.</creator><creator>Youngsciortino, Clifford</creator><creator>Ng, Garrick</creator><creator>Black, Dolores</creator><creator>Cannon, Matthew</creator><creator>Black, Jeffrey</creator><creator>Quinn, Heather</creator><creator>Brunhaver, John</creator><creator>Barnaby, Hugh</creator><creator>Manuel, Jack</creator><creator>Blansett, Ethan</creator><creator>Marinella, Matthew J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-5282-3506</orcidid><orcidid>https://orcid.org/0000-0003-0378-7622</orcidid><orcidid>https://orcid.org/0000-0001-7741-6512</orcidid><orcidid>https://orcid.org/0000-0003-4690-9503</orcidid><orcidid>https://orcid.org/0000-0002-6537-1836</orcidid><orcidid>https://orcid.org/0000-0003-3058-7992</orcidid><orcidid>https://orcid.org/0000-0002-8136-1849</orcidid><orcidid>https://orcid.org/0000-0002-2522-0451</orcidid><orcidid>https://orcid.org/0000-0002-8594-4670</orcidid><orcidid>https://orcid.org/0000-0002-3676-6986</orcidid><orcidid>https://orcid.org/0000000225220451</orcidid><orcidid>https://orcid.org/0000000236766986</orcidid><orcidid>https://orcid.org/0000000252823506</orcidid><orcidid>https://orcid.org/0000000346909503</orcidid><orcidid>https://orcid.org/0000000265371836</orcidid><orcidid>https://orcid.org/0000000281361849</orcidid><orcidid>https://orcid.org/0000000177416512</orcidid><orcidid>https://orcid.org/0000000303787622</orcidid><orcidid>https://orcid.org/0000000330587992</orcidid><orcidid>https://orcid.org/0000000285944670</orcidid></search><sort><creationdate>20220301</creationdate><title>Measuring and Modeling Single Event Transients in 12-nm Inverters</title><author>Agarwal, Sapan ; Clark, Lawrence T. ; Youngsciortino, Clifford ; Ng, Garrick ; Black, Dolores ; Cannon, Matthew ; Black, Jeffrey ; Quinn, Heather ; Brunhaver, John ; Barnaby, Hugh ; Manuel, Jack ; Blansett, Ethan ; Marinella, Matthew J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-d3b62aae6cee0cf863fb980492ab2e4c7e9d33b4df0cfaf851b419612929d7043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Circuits</topic><topic>Clocks</topic><topic>Cross-sections</topic><topic>FinFET</topic><topic>Flip-flops</topic><topic>Integrated circuit modeling</topic><topic>Inverters</topic><topic>Measurement methods</topic><topic>modeling</topic><topic>Modelling</topic><topic>Radiation</topic><topic>Shift registers</topic><topic>Simulation</topic><topic>single event transient (SET)</topic><topic>soft-error</topic><topic>Solid modeling</topic><topic>Strikes</topic><topic>Substrates</topic><topic>technology CAD</topic><topic>Transient analysis</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agarwal, Sapan</creatorcontrib><creatorcontrib>Clark, Lawrence T.</creatorcontrib><creatorcontrib>Youngsciortino, Clifford</creatorcontrib><creatorcontrib>Ng, Garrick</creatorcontrib><creatorcontrib>Black, Dolores</creatorcontrib><creatorcontrib>Cannon, Matthew</creatorcontrib><creatorcontrib>Black, Jeffrey</creatorcontrib><creatorcontrib>Quinn, Heather</creatorcontrib><creatorcontrib>Brunhaver, John</creatorcontrib><creatorcontrib>Barnaby, Hugh</creatorcontrib><creatorcontrib>Manuel, Jack</creatorcontrib><creatorcontrib>Blansett, Ethan</creatorcontrib><creatorcontrib>Marinella, Matthew J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>OSTI.GOV</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agarwal, Sapan</au><au>Clark, Lawrence T.</au><au>Youngsciortino, Clifford</au><au>Ng, Garrick</au><au>Black, Dolores</au><au>Cannon, Matthew</au><au>Black, Jeffrey</au><au>Quinn, Heather</au><au>Brunhaver, John</au><au>Barnaby, Hugh</au><au>Manuel, Jack</au><au>Blansett, Ethan</au><au>Marinella, Matthew J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measuring and Modeling Single Event Transients in 12-nm Inverters</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>69</volume><issue>3</issue><spage>414</spage><epage>421</epage><pages>414-421</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract>In this article, we present a unique method of measuring single-event transient (SET) sensitivity in 12-nm FinFET technology. A test structure is presented that approximately measures the length of SETs using flip-flop shift registers with clock inputs driven by an inverter chain. The test structure was irradiated with ions at linear energy transfers (LETs) of 4.0, 5.6, 10.4, and 17.9 MeV-cm 2 /mg, and the cross sections of SET pulses measured down to 12.7 ps are presented. The experimental results are interpreted using a modeling methodology that combines TCAD and radiation effect simulations to capture the SET physics, and SPICE simulations to model the SETs in a circuit. The modeling shows that only ion strikes on the fin structure of the transistor would result in enough charge collected to produce SETs, while strikes in the subfin and substrate do not result in enough charge collected to produce measurable transients. Comparisons of the cumulative cross sections obtained from the experiment and from the simulations validate the modeling methodology presented.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNS.2022.3147745</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-5282-3506</orcidid><orcidid>https://orcid.org/0000-0003-0378-7622</orcidid><orcidid>https://orcid.org/0000-0001-7741-6512</orcidid><orcidid>https://orcid.org/0000-0003-4690-9503</orcidid><orcidid>https://orcid.org/0000-0002-6537-1836</orcidid><orcidid>https://orcid.org/0000-0003-3058-7992</orcidid><orcidid>https://orcid.org/0000-0002-8136-1849</orcidid><orcidid>https://orcid.org/0000-0002-2522-0451</orcidid><orcidid>https://orcid.org/0000-0002-8594-4670</orcidid><orcidid>https://orcid.org/0000-0002-3676-6986</orcidid><orcidid>https://orcid.org/0000000225220451</orcidid><orcidid>https://orcid.org/0000000236766986</orcidid><orcidid>https://orcid.org/0000000252823506</orcidid><orcidid>https://orcid.org/0000000346909503</orcidid><orcidid>https://orcid.org/0000000265371836</orcidid><orcidid>https://orcid.org/0000000281361849</orcidid><orcidid>https://orcid.org/0000000177416512</orcidid><orcidid>https://orcid.org/0000000303787622</orcidid><orcidid>https://orcid.org/0000000330587992</orcidid><orcidid>https://orcid.org/0000000285944670</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0018-9499
ispartof IEEE transactions on nuclear science, 2022-03, Vol.69 (3), p.414-421
issn 0018-9499
1558-1578
language eng
recordid cdi_ieee_primary_9696339
source IEEE Electronic Library (IEL)
subjects Circuits
Clocks
Cross-sections
FinFET
Flip-flops
Integrated circuit modeling
Inverters
Measurement methods
modeling
Modelling
Radiation
Shift registers
Simulation
single event transient (SET)
soft-error
Solid modeling
Strikes
Substrates
technology CAD
Transient analysis
Transistors
title Measuring and Modeling Single Event Transients in 12-nm Inverters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A25%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measuring%20and%20Modeling%20Single%20Event%20Transients%20in%2012-nm%20Inverters&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Agarwal,%20Sapan&rft.date=2022-03-01&rft.volume=69&rft.issue=3&rft.spage=414&rft.epage=421&rft.pages=414-421&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/TNS.2022.3147745&rft_dat=%3Cproquest_ieee_%3E2639933446%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2639933446&rft_id=info:pmid/&rft_ieee_id=9696339&rfr_iscdi=true