Buried Interconnects for Sub-5 nm SRAM Design

The metal resistance increase due to interconnect pitch scaling was traditionally offset by interconnect length scaling. This is no longer the case for deeply scaled nodes with narrow critical dimensions (CDs) of metals. Static random access memories (SRAMs) route long critical signals such as bitli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2022-03, Vol.69 (3), p.1041-1047
Hauptverfasser: Mathur, R., Bhargava, M., Cline, B., Salahuddin, S., Gupta, A., Schuddinck, P., Ryckaert, J., Kulkarni, J. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1047
container_issue 3
container_start_page 1041
container_title IEEE transactions on electron devices
container_volume 69
creator Mathur, R.
Bhargava, M.
Cline, B.
Salahuddin, S.
Gupta, A.
Schuddinck, P.
Ryckaert, J.
Kulkarni, J. P.
description The metal resistance increase due to interconnect pitch scaling was traditionally offset by interconnect length scaling. This is no longer the case for deeply scaled nodes with narrow critical dimensions (CDs) of metals. Static random access memories (SRAMs) route long critical signals such as bitlines and wordlines in lower metal layers of the back-end-of-line (BEOL) and are particularly affected by this metal resistance increase. Buried power rail (BPR) has been proposed in sub-5-nm nodes for routing power and ground lines to improve the performance and density of standard cells and mitigate voltage IR drop issues. We extend the work by exploring the use of buried interconnect for both signal and power routing in SRAMs with minimal process flow changes to the already proposed BPR technology. A high-accuracy 3-D field solver is used for accurate parasitic extraction of SRAM bitcells with buried interconnects. Industry-standard methods are used to evaluate the SRAM macro-level power-performance metrics. We show that the buried interconnects can improve SRAM access time by up to 11%, write time by up to 28%, and dynamic power by 4%, effectively equivalent to one full technology-node gain improvement.
doi_str_mv 10.1109/TED.2022.3143078
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9696183</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9696183</ieee_id><sourcerecordid>2635046011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-891b7463a54524f2760d6d91d039d901f35967b2541584e47d6edc9141c64ec03</originalsourceid><addsrcrecordid>eNo9kM9Lw0AQhRdRsFbvgpeA560z-yvZY22rFiqCreel3Z1Iik3qbnLwv29Ki6fhwffewMfYPcIIEezTajYdCRBiJFFJyIsLNkCtc26NMpdsAIAFt7KQ1-wmpW0fjVJiwPhzFysK2bxuKfqmrsm3KSubmC27DddZvcuWn-P3bEqp-q5v2VW5_kl0d75D9vUyW03e-OLjdT4ZL7gXFlteWNzkysi1VlqoUuQGggkWA0gbLGAptTX5RmiFulCk8mAoeIsKvVHkQQ7Z42l3H5vfjlLrtk0X6_6lE0ZqUAYQewpOlI9NSpFKt4_Vbh3_HII7SnG9FHeU4s5S-srDqVIR0T9ujTVYSHkAEjBZMA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2635046011</pqid></control><display><type>article</type><title>Buried Interconnects for Sub-5 nm SRAM Design</title><source>IEEE Electronic Library (IEL)</source><creator>Mathur, R. ; Bhargava, M. ; Cline, B. ; Salahuddin, S. ; Gupta, A. ; Schuddinck, P. ; Ryckaert, J. ; Kulkarni, J. P.</creator><creatorcontrib>Mathur, R. ; Bhargava, M. ; Cline, B. ; Salahuddin, S. ; Gupta, A. ; Schuddinck, P. ; Ryckaert, J. ; Kulkarni, J. P.</creatorcontrib><description>The metal resistance increase due to interconnect pitch scaling was traditionally offset by interconnect length scaling. This is no longer the case for deeply scaled nodes with narrow critical dimensions (CDs) of metals. Static random access memories (SRAMs) route long critical signals such as bitlines and wordlines in lower metal layers of the back-end-of-line (BEOL) and are particularly affected by this metal resistance increase. Buried power rail (BPR) has been proposed in sub-5-nm nodes for routing power and ground lines to improve the performance and density of standard cells and mitigate voltage IR drop issues. We extend the work by exploring the use of buried interconnect for both signal and power routing in SRAMs with minimal process flow changes to the already proposed BPR technology. A high-accuracy 3-D field solver is used for accurate parasitic extraction of SRAM bitcells with buried interconnects. Industry-standard methods are used to evaluate the SRAM macro-level power-performance metrics. We show that the buried interconnects can improve SRAM access time by up to 11%, write time by up to 28%, and dynamic power by 4%, effectively equivalent to one full technology-node gain improvement.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2022.3143078</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Access time ; Bitline (BL) ; buried power rail (BPR) ; Business process re-engineering ; Capacitance ; Design Technology Co-Optimization (DTCO) ; interconnect ; Interconnections ; Metals ; Nodes ; Performance enhancement ; Performance measurement ; Random access memory ; Resistance ; Signal processing ; static random access memories (SRAM) ; Static random access memory ; Voltage ; Wires ; wordline (WL)</subject><ispartof>IEEE transactions on electron devices, 2022-03, Vol.69 (3), p.1041-1047</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-891b7463a54524f2760d6d91d039d901f35967b2541584e47d6edc9141c64ec03</citedby><cites>FETCH-LOGICAL-c291t-891b7463a54524f2760d6d91d039d901f35967b2541584e47d6edc9141c64ec03</cites><orcidid>0000-0003-4276-5397 ; 0000-0002-8064-5612 ; 0000-0002-6483-8430 ; 0000-0002-0258-6776</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9696183$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9696183$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mathur, R.</creatorcontrib><creatorcontrib>Bhargava, M.</creatorcontrib><creatorcontrib>Cline, B.</creatorcontrib><creatorcontrib>Salahuddin, S.</creatorcontrib><creatorcontrib>Gupta, A.</creatorcontrib><creatorcontrib>Schuddinck, P.</creatorcontrib><creatorcontrib>Ryckaert, J.</creatorcontrib><creatorcontrib>Kulkarni, J. P.</creatorcontrib><title>Buried Interconnects for Sub-5 nm SRAM Design</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>The metal resistance increase due to interconnect pitch scaling was traditionally offset by interconnect length scaling. This is no longer the case for deeply scaled nodes with narrow critical dimensions (CDs) of metals. Static random access memories (SRAMs) route long critical signals such as bitlines and wordlines in lower metal layers of the back-end-of-line (BEOL) and are particularly affected by this metal resistance increase. Buried power rail (BPR) has been proposed in sub-5-nm nodes for routing power and ground lines to improve the performance and density of standard cells and mitigate voltage IR drop issues. We extend the work by exploring the use of buried interconnect for both signal and power routing in SRAMs with minimal process flow changes to the already proposed BPR technology. A high-accuracy 3-D field solver is used for accurate parasitic extraction of SRAM bitcells with buried interconnects. Industry-standard methods are used to evaluate the SRAM macro-level power-performance metrics. We show that the buried interconnects can improve SRAM access time by up to 11%, write time by up to 28%, and dynamic power by 4%, effectively equivalent to one full technology-node gain improvement.</description><subject>Access time</subject><subject>Bitline (BL)</subject><subject>buried power rail (BPR)</subject><subject>Business process re-engineering</subject><subject>Capacitance</subject><subject>Design Technology Co-Optimization (DTCO)</subject><subject>interconnect</subject><subject>Interconnections</subject><subject>Metals</subject><subject>Nodes</subject><subject>Performance enhancement</subject><subject>Performance measurement</subject><subject>Random access memory</subject><subject>Resistance</subject><subject>Signal processing</subject><subject>static random access memories (SRAM)</subject><subject>Static random access memory</subject><subject>Voltage</subject><subject>Wires</subject><subject>wordline (WL)</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM9Lw0AQhRdRsFbvgpeA560z-yvZY22rFiqCreel3Z1Iik3qbnLwv29Ki6fhwffewMfYPcIIEezTajYdCRBiJFFJyIsLNkCtc26NMpdsAIAFt7KQ1-wmpW0fjVJiwPhzFysK2bxuKfqmrsm3KSubmC27DddZvcuWn-P3bEqp-q5v2VW5_kl0d75D9vUyW03e-OLjdT4ZL7gXFlteWNzkysi1VlqoUuQGggkWA0gbLGAptTX5RmiFulCk8mAoeIsKvVHkQQ7Z42l3H5vfjlLrtk0X6_6lE0ZqUAYQewpOlI9NSpFKt4_Vbh3_HII7SnG9FHeU4s5S-srDqVIR0T9ujTVYSHkAEjBZMA</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Mathur, R.</creator><creator>Bhargava, M.</creator><creator>Cline, B.</creator><creator>Salahuddin, S.</creator><creator>Gupta, A.</creator><creator>Schuddinck, P.</creator><creator>Ryckaert, J.</creator><creator>Kulkarni, J. P.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4276-5397</orcidid><orcidid>https://orcid.org/0000-0002-8064-5612</orcidid><orcidid>https://orcid.org/0000-0002-6483-8430</orcidid><orcidid>https://orcid.org/0000-0002-0258-6776</orcidid></search><sort><creationdate>20220301</creationdate><title>Buried Interconnects for Sub-5 nm SRAM Design</title><author>Mathur, R. ; Bhargava, M. ; Cline, B. ; Salahuddin, S. ; Gupta, A. ; Schuddinck, P. ; Ryckaert, J. ; Kulkarni, J. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-891b7463a54524f2760d6d91d039d901f35967b2541584e47d6edc9141c64ec03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Access time</topic><topic>Bitline (BL)</topic><topic>buried power rail (BPR)</topic><topic>Business process re-engineering</topic><topic>Capacitance</topic><topic>Design Technology Co-Optimization (DTCO)</topic><topic>interconnect</topic><topic>Interconnections</topic><topic>Metals</topic><topic>Nodes</topic><topic>Performance enhancement</topic><topic>Performance measurement</topic><topic>Random access memory</topic><topic>Resistance</topic><topic>Signal processing</topic><topic>static random access memories (SRAM)</topic><topic>Static random access memory</topic><topic>Voltage</topic><topic>Wires</topic><topic>wordline (WL)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mathur, R.</creatorcontrib><creatorcontrib>Bhargava, M.</creatorcontrib><creatorcontrib>Cline, B.</creatorcontrib><creatorcontrib>Salahuddin, S.</creatorcontrib><creatorcontrib>Gupta, A.</creatorcontrib><creatorcontrib>Schuddinck, P.</creatorcontrib><creatorcontrib>Ryckaert, J.</creatorcontrib><creatorcontrib>Kulkarni, J. P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mathur, R.</au><au>Bhargava, M.</au><au>Cline, B.</au><au>Salahuddin, S.</au><au>Gupta, A.</au><au>Schuddinck, P.</au><au>Ryckaert, J.</au><au>Kulkarni, J. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Buried Interconnects for Sub-5 nm SRAM Design</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>69</volume><issue>3</issue><spage>1041</spage><epage>1047</epage><pages>1041-1047</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>The metal resistance increase due to interconnect pitch scaling was traditionally offset by interconnect length scaling. This is no longer the case for deeply scaled nodes with narrow critical dimensions (CDs) of metals. Static random access memories (SRAMs) route long critical signals such as bitlines and wordlines in lower metal layers of the back-end-of-line (BEOL) and are particularly affected by this metal resistance increase. Buried power rail (BPR) has been proposed in sub-5-nm nodes for routing power and ground lines to improve the performance and density of standard cells and mitigate voltage IR drop issues. We extend the work by exploring the use of buried interconnect for both signal and power routing in SRAMs with minimal process flow changes to the already proposed BPR technology. A high-accuracy 3-D field solver is used for accurate parasitic extraction of SRAM bitcells with buried interconnects. Industry-standard methods are used to evaluate the SRAM macro-level power-performance metrics. We show that the buried interconnects can improve SRAM access time by up to 11%, write time by up to 28%, and dynamic power by 4%, effectively equivalent to one full technology-node gain improvement.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2022.3143078</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-4276-5397</orcidid><orcidid>https://orcid.org/0000-0002-8064-5612</orcidid><orcidid>https://orcid.org/0000-0002-6483-8430</orcidid><orcidid>https://orcid.org/0000-0002-0258-6776</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2022-03, Vol.69 (3), p.1041-1047
issn 0018-9383
1557-9646
language eng
recordid cdi_ieee_primary_9696183
source IEEE Electronic Library (IEL)
subjects Access time
Bitline (BL)
buried power rail (BPR)
Business process re-engineering
Capacitance
Design Technology Co-Optimization (DTCO)
interconnect
Interconnections
Metals
Nodes
Performance enhancement
Performance measurement
Random access memory
Resistance
Signal processing
static random access memories (SRAM)
Static random access memory
Voltage
Wires
wordline (WL)
title Buried Interconnects for Sub-5 nm SRAM Design
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T17%3A32%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Buried%20Interconnects%20for%20Sub-5%20nm%20SRAM%20Design&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Mathur,%20R.&rft.date=2022-03-01&rft.volume=69&rft.issue=3&rft.spage=1041&rft.epage=1047&rft.pages=1041-1047&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2022.3143078&rft_dat=%3Cproquest_RIE%3E2635046011%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2635046011&rft_id=info:pmid/&rft_ieee_id=9696183&rfr_iscdi=true