A Novel Joint Dataset and Computation Management Scheme for Energy-Efficient Federated Learning in Mobile Edge Computing

In this letter, a novel joint dataset and computation management (DCM) scheme for energy-efficient federated learning (FL) in mobile edge computing (MEC) is proposed. For this purpose, with respect to the amount of dataset and computation resources, we rigorously formulated analytical models for i)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE wireless communications letters 2022-05, Vol.11 (5), p.898-902
Hauptverfasser: Kim, Jingyeom, Kim, Doyeon, Lee, Joohyung, Hwang, Jungyeon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 902
container_issue 5
container_start_page 898
container_title IEEE wireless communications letters
container_volume 11
creator Kim, Jingyeom
Kim, Doyeon
Lee, Joohyung
Hwang, Jungyeon
description In this letter, a novel joint dataset and computation management (DCM) scheme for energy-efficient federated learning (FL) in mobile edge computing (MEC) is proposed. For this purpose, with respect to the amount of dataset and computation resources, we rigorously formulated analytical models for i) learning efficiency, which considers the estimated global accuracy tendency according to the amount of dataset and service latency, and ii) the overall energy consumption of FL participants, including local training and model parameter transmission. To consider the trade-off between these two factors in the FL procedure with MEC, a theoretical framework for the DCM problem that jointly optimizes the amount of dataset and the computation resources used for local training over multiple FL clients was designed. Additionally, the extensive simulation-based performance evaluations validate the superior performance of the proposed DCM; compared to the various benchmarks in terms of the proposed cost function and test accuracy on the MNIST dataset with independent identically distributed (IID) / non-IID settings.
doi_str_mv 10.1109/LWC.2022.3147236
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9695976</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9695976</ieee_id><sourcerecordid>2662095883</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-2f4581c7177c4043ed01edf79aa396e349dd568d0825c9b8d1728ae09e796eb13</originalsourceid><addsrcrecordid>eNo9kM9LwzAUx4MoOObugpeA5878aJPmOGrnD6oeVDyWrHmtGVsy007cf2_Gxt7lPfj-ePBB6JqSKaVE3VVfxZQRxqacppJxcYZGjAqWMJ5m56eby0s06fsliSMIZTQfob8ZfvW_sMLP3roB3-tB9zBg7Qwu_HqzHfRgvcMv2ukO1hAt7813PHDrAy4dhG6XlG1rG7vX5mAg6AEMrkAHZ12HbQz7hV0BLk0Hx9IoXKGLVq96mBz3GH3Oy4_iManeHp6KWZU0TNEhYW2a5bSRVMomJSkHQyiYViqtuRLAU2VMJnJDcpY1apEbKlmugSiQUV5QPka3h95N8D9b6Id66bfBxZc1E4IRleU5jy5ycDXB932Att4Eu9ZhV1NS7xHXEXG9R1wfEcfIzSFiAeBkV0JlSgr-D1mlduw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2662095883</pqid></control><display><type>article</type><title>A Novel Joint Dataset and Computation Management Scheme for Energy-Efficient Federated Learning in Mobile Edge Computing</title><source>IEEE Electronic Library (IEL)</source><creator>Kim, Jingyeom ; Kim, Doyeon ; Lee, Joohyung ; Hwang, Jungyeon</creator><creatorcontrib>Kim, Jingyeom ; Kim, Doyeon ; Lee, Joohyung ; Hwang, Jungyeon</creatorcontrib><description>In this letter, a novel joint dataset and computation management (DCM) scheme for energy-efficient federated learning (FL) in mobile edge computing (MEC) is proposed. For this purpose, with respect to the amount of dataset and computation resources, we rigorously formulated analytical models for i) learning efficiency, which considers the estimated global accuracy tendency according to the amount of dataset and service latency, and ii) the overall energy consumption of FL participants, including local training and model parameter transmission. To consider the trade-off between these two factors in the FL procedure with MEC, a theoretical framework for the DCM problem that jointly optimizes the amount of dataset and the computation resources used for local training over multiple FL clients was designed. Additionally, the extensive simulation-based performance evaluations validate the superior performance of the proposed DCM; compared to the various benchmarks in terms of the proposed cost function and test accuracy on the MNIST dataset with independent identically distributed (IID) / non-IID settings.</description><identifier>ISSN: 2162-2337</identifier><identifier>EISSN: 2162-2345</identifier><identifier>DOI: 10.1109/LWC.2022.3147236</identifier><identifier>CODEN: IWCLAF</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Analytical models ; Computational modeling ; Cost function ; Datasets ; Edge computing ; Energy consumption ; energy efficiency ; Federated learning ; Mathematical models ; Mobile computing ; mobile edge computing ; Performance evaluation ; Resource management ; Servers ; Training ; Wireless communication</subject><ispartof>IEEE wireless communications letters, 2022-05, Vol.11 (5), p.898-902</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-2f4581c7177c4043ed01edf79aa396e349dd568d0825c9b8d1728ae09e796eb13</citedby><cites>FETCH-LOGICAL-c291t-2f4581c7177c4043ed01edf79aa396e349dd568d0825c9b8d1728ae09e796eb13</cites><orcidid>0000-0002-7257-245X ; 0000-0002-6484-8575 ; 0000-0003-1102-3905</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9695976$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9695976$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kim, Jingyeom</creatorcontrib><creatorcontrib>Kim, Doyeon</creatorcontrib><creatorcontrib>Lee, Joohyung</creatorcontrib><creatorcontrib>Hwang, Jungyeon</creatorcontrib><title>A Novel Joint Dataset and Computation Management Scheme for Energy-Efficient Federated Learning in Mobile Edge Computing</title><title>IEEE wireless communications letters</title><addtitle>LWC</addtitle><description>In this letter, a novel joint dataset and computation management (DCM) scheme for energy-efficient federated learning (FL) in mobile edge computing (MEC) is proposed. For this purpose, with respect to the amount of dataset and computation resources, we rigorously formulated analytical models for i) learning efficiency, which considers the estimated global accuracy tendency according to the amount of dataset and service latency, and ii) the overall energy consumption of FL participants, including local training and model parameter transmission. To consider the trade-off between these two factors in the FL procedure with MEC, a theoretical framework for the DCM problem that jointly optimizes the amount of dataset and the computation resources used for local training over multiple FL clients was designed. Additionally, the extensive simulation-based performance evaluations validate the superior performance of the proposed DCM; compared to the various benchmarks in terms of the proposed cost function and test accuracy on the MNIST dataset with independent identically distributed (IID) / non-IID settings.</description><subject>Accuracy</subject><subject>Analytical models</subject><subject>Computational modeling</subject><subject>Cost function</subject><subject>Datasets</subject><subject>Edge computing</subject><subject>Energy consumption</subject><subject>energy efficiency</subject><subject>Federated learning</subject><subject>Mathematical models</subject><subject>Mobile computing</subject><subject>mobile edge computing</subject><subject>Performance evaluation</subject><subject>Resource management</subject><subject>Servers</subject><subject>Training</subject><subject>Wireless communication</subject><issn>2162-2337</issn><issn>2162-2345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM9LwzAUx4MoOObugpeA5878aJPmOGrnD6oeVDyWrHmtGVsy007cf2_Gxt7lPfj-ePBB6JqSKaVE3VVfxZQRxqacppJxcYZGjAqWMJ5m56eby0s06fsliSMIZTQfob8ZfvW_sMLP3roB3-tB9zBg7Qwu_HqzHfRgvcMv2ukO1hAt7813PHDrAy4dhG6XlG1rG7vX5mAg6AEMrkAHZ12HbQz7hV0BLk0Hx9IoXKGLVq96mBz3GH3Oy4_iManeHp6KWZU0TNEhYW2a5bSRVMomJSkHQyiYViqtuRLAU2VMJnJDcpY1apEbKlmugSiQUV5QPka3h95N8D9b6Id66bfBxZc1E4IRleU5jy5ycDXB932Att4Eu9ZhV1NS7xHXEXG9R1wfEcfIzSFiAeBkV0JlSgr-D1mlduw</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Kim, Jingyeom</creator><creator>Kim, Doyeon</creator><creator>Lee, Joohyung</creator><creator>Hwang, Jungyeon</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7257-245X</orcidid><orcidid>https://orcid.org/0000-0002-6484-8575</orcidid><orcidid>https://orcid.org/0000-0003-1102-3905</orcidid></search><sort><creationdate>20220501</creationdate><title>A Novel Joint Dataset and Computation Management Scheme for Energy-Efficient Federated Learning in Mobile Edge Computing</title><author>Kim, Jingyeom ; Kim, Doyeon ; Lee, Joohyung ; Hwang, Jungyeon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-2f4581c7177c4043ed01edf79aa396e349dd568d0825c9b8d1728ae09e796eb13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Analytical models</topic><topic>Computational modeling</topic><topic>Cost function</topic><topic>Datasets</topic><topic>Edge computing</topic><topic>Energy consumption</topic><topic>energy efficiency</topic><topic>Federated learning</topic><topic>Mathematical models</topic><topic>Mobile computing</topic><topic>mobile edge computing</topic><topic>Performance evaluation</topic><topic>Resource management</topic><topic>Servers</topic><topic>Training</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Jingyeom</creatorcontrib><creatorcontrib>Kim, Doyeon</creatorcontrib><creatorcontrib>Lee, Joohyung</creatorcontrib><creatorcontrib>Hwang, Jungyeon</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE wireless communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kim, Jingyeom</au><au>Kim, Doyeon</au><au>Lee, Joohyung</au><au>Hwang, Jungyeon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Joint Dataset and Computation Management Scheme for Energy-Efficient Federated Learning in Mobile Edge Computing</atitle><jtitle>IEEE wireless communications letters</jtitle><stitle>LWC</stitle><date>2022-05-01</date><risdate>2022</risdate><volume>11</volume><issue>5</issue><spage>898</spage><epage>902</epage><pages>898-902</pages><issn>2162-2337</issn><eissn>2162-2345</eissn><coden>IWCLAF</coden><abstract>In this letter, a novel joint dataset and computation management (DCM) scheme for energy-efficient federated learning (FL) in mobile edge computing (MEC) is proposed. For this purpose, with respect to the amount of dataset and computation resources, we rigorously formulated analytical models for i) learning efficiency, which considers the estimated global accuracy tendency according to the amount of dataset and service latency, and ii) the overall energy consumption of FL participants, including local training and model parameter transmission. To consider the trade-off between these two factors in the FL procedure with MEC, a theoretical framework for the DCM problem that jointly optimizes the amount of dataset and the computation resources used for local training over multiple FL clients was designed. Additionally, the extensive simulation-based performance evaluations validate the superior performance of the proposed DCM; compared to the various benchmarks in terms of the proposed cost function and test accuracy on the MNIST dataset with independent identically distributed (IID) / non-IID settings.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LWC.2022.3147236</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-7257-245X</orcidid><orcidid>https://orcid.org/0000-0002-6484-8575</orcidid><orcidid>https://orcid.org/0000-0003-1102-3905</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2162-2337
ispartof IEEE wireless communications letters, 2022-05, Vol.11 (5), p.898-902
issn 2162-2337
2162-2345
language eng
recordid cdi_ieee_primary_9695976
source IEEE Electronic Library (IEL)
subjects Accuracy
Analytical models
Computational modeling
Cost function
Datasets
Edge computing
Energy consumption
energy efficiency
Federated learning
Mathematical models
Mobile computing
mobile edge computing
Performance evaluation
Resource management
Servers
Training
Wireless communication
title A Novel Joint Dataset and Computation Management Scheme for Energy-Efficient Federated Learning in Mobile Edge Computing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T21%3A46%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Joint%20Dataset%20and%20Computation%20Management%20Scheme%20for%20Energy-Efficient%20Federated%20Learning%20in%20Mobile%20Edge%20Computing&rft.jtitle=IEEE%20wireless%20communications%20letters&rft.au=Kim,%20Jingyeom&rft.date=2022-05-01&rft.volume=11&rft.issue=5&rft.spage=898&rft.epage=902&rft.pages=898-902&rft.issn=2162-2337&rft.eissn=2162-2345&rft.coden=IWCLAF&rft_id=info:doi/10.1109/LWC.2022.3147236&rft_dat=%3Cproquest_RIE%3E2662095883%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2662095883&rft_id=info:pmid/&rft_ieee_id=9695976&rfr_iscdi=true