A Novel Joint Dataset and Computation Management Scheme for Energy-Efficient Federated Learning in Mobile Edge Computing
In this letter, a novel joint dataset and computation management (DCM) scheme for energy-efficient federated learning (FL) in mobile edge computing (MEC) is proposed. For this purpose, with respect to the amount of dataset and computation resources, we rigorously formulated analytical models for i)...
Gespeichert in:
Veröffentlicht in: | IEEE wireless communications letters 2022-05, Vol.11 (5), p.898-902 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 902 |
---|---|
container_issue | 5 |
container_start_page | 898 |
container_title | IEEE wireless communications letters |
container_volume | 11 |
creator | Kim, Jingyeom Kim, Doyeon Lee, Joohyung Hwang, Jungyeon |
description | In this letter, a novel joint dataset and computation management (DCM) scheme for energy-efficient federated learning (FL) in mobile edge computing (MEC) is proposed. For this purpose, with respect to the amount of dataset and computation resources, we rigorously formulated analytical models for i) learning efficiency, which considers the estimated global accuracy tendency according to the amount of dataset and service latency, and ii) the overall energy consumption of FL participants, including local training and model parameter transmission. To consider the trade-off between these two factors in the FL procedure with MEC, a theoretical framework for the DCM problem that jointly optimizes the amount of dataset and the computation resources used for local training over multiple FL clients was designed. Additionally, the extensive simulation-based performance evaluations validate the superior performance of the proposed DCM; compared to the various benchmarks in terms of the proposed cost function and test accuracy on the MNIST dataset with independent identically distributed (IID) / non-IID settings. |
doi_str_mv | 10.1109/LWC.2022.3147236 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9695976</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9695976</ieee_id><sourcerecordid>2662095883</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-2f4581c7177c4043ed01edf79aa396e349dd568d0825c9b8d1728ae09e796eb13</originalsourceid><addsrcrecordid>eNo9kM9LwzAUx4MoOObugpeA5878aJPmOGrnD6oeVDyWrHmtGVsy007cf2_Gxt7lPfj-ePBB6JqSKaVE3VVfxZQRxqacppJxcYZGjAqWMJ5m56eby0s06fsliSMIZTQfob8ZfvW_sMLP3roB3-tB9zBg7Qwu_HqzHfRgvcMv2ukO1hAt7813PHDrAy4dhG6XlG1rG7vX5mAg6AEMrkAHZ12HbQz7hV0BLk0Hx9IoXKGLVq96mBz3GH3Oy4_iManeHp6KWZU0TNEhYW2a5bSRVMomJSkHQyiYViqtuRLAU2VMJnJDcpY1apEbKlmugSiQUV5QPka3h95N8D9b6Id66bfBxZc1E4IRleU5jy5ycDXB932Att4Eu9ZhV1NS7xHXEXG9R1wfEcfIzSFiAeBkV0JlSgr-D1mlduw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2662095883</pqid></control><display><type>article</type><title>A Novel Joint Dataset and Computation Management Scheme for Energy-Efficient Federated Learning in Mobile Edge Computing</title><source>IEEE Electronic Library (IEL)</source><creator>Kim, Jingyeom ; Kim, Doyeon ; Lee, Joohyung ; Hwang, Jungyeon</creator><creatorcontrib>Kim, Jingyeom ; Kim, Doyeon ; Lee, Joohyung ; Hwang, Jungyeon</creatorcontrib><description>In this letter, a novel joint dataset and computation management (DCM) scheme for energy-efficient federated learning (FL) in mobile edge computing (MEC) is proposed. For this purpose, with respect to the amount of dataset and computation resources, we rigorously formulated analytical models for i) learning efficiency, which considers the estimated global accuracy tendency according to the amount of dataset and service latency, and ii) the overall energy consumption of FL participants, including local training and model parameter transmission. To consider the trade-off between these two factors in the FL procedure with MEC, a theoretical framework for the DCM problem that jointly optimizes the amount of dataset and the computation resources used for local training over multiple FL clients was designed. Additionally, the extensive simulation-based performance evaluations validate the superior performance of the proposed DCM; compared to the various benchmarks in terms of the proposed cost function and test accuracy on the MNIST dataset with independent identically distributed (IID) / non-IID settings.</description><identifier>ISSN: 2162-2337</identifier><identifier>EISSN: 2162-2345</identifier><identifier>DOI: 10.1109/LWC.2022.3147236</identifier><identifier>CODEN: IWCLAF</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Analytical models ; Computational modeling ; Cost function ; Datasets ; Edge computing ; Energy consumption ; energy efficiency ; Federated learning ; Mathematical models ; Mobile computing ; mobile edge computing ; Performance evaluation ; Resource management ; Servers ; Training ; Wireless communication</subject><ispartof>IEEE wireless communications letters, 2022-05, Vol.11 (5), p.898-902</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-2f4581c7177c4043ed01edf79aa396e349dd568d0825c9b8d1728ae09e796eb13</citedby><cites>FETCH-LOGICAL-c291t-2f4581c7177c4043ed01edf79aa396e349dd568d0825c9b8d1728ae09e796eb13</cites><orcidid>0000-0002-7257-245X ; 0000-0002-6484-8575 ; 0000-0003-1102-3905</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9695976$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9695976$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kim, Jingyeom</creatorcontrib><creatorcontrib>Kim, Doyeon</creatorcontrib><creatorcontrib>Lee, Joohyung</creatorcontrib><creatorcontrib>Hwang, Jungyeon</creatorcontrib><title>A Novel Joint Dataset and Computation Management Scheme for Energy-Efficient Federated Learning in Mobile Edge Computing</title><title>IEEE wireless communications letters</title><addtitle>LWC</addtitle><description>In this letter, a novel joint dataset and computation management (DCM) scheme for energy-efficient federated learning (FL) in mobile edge computing (MEC) is proposed. For this purpose, with respect to the amount of dataset and computation resources, we rigorously formulated analytical models for i) learning efficiency, which considers the estimated global accuracy tendency according to the amount of dataset and service latency, and ii) the overall energy consumption of FL participants, including local training and model parameter transmission. To consider the trade-off between these two factors in the FL procedure with MEC, a theoretical framework for the DCM problem that jointly optimizes the amount of dataset and the computation resources used for local training over multiple FL clients was designed. Additionally, the extensive simulation-based performance evaluations validate the superior performance of the proposed DCM; compared to the various benchmarks in terms of the proposed cost function and test accuracy on the MNIST dataset with independent identically distributed (IID) / non-IID settings.</description><subject>Accuracy</subject><subject>Analytical models</subject><subject>Computational modeling</subject><subject>Cost function</subject><subject>Datasets</subject><subject>Edge computing</subject><subject>Energy consumption</subject><subject>energy efficiency</subject><subject>Federated learning</subject><subject>Mathematical models</subject><subject>Mobile computing</subject><subject>mobile edge computing</subject><subject>Performance evaluation</subject><subject>Resource management</subject><subject>Servers</subject><subject>Training</subject><subject>Wireless communication</subject><issn>2162-2337</issn><issn>2162-2345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM9LwzAUx4MoOObugpeA5878aJPmOGrnD6oeVDyWrHmtGVsy007cf2_Gxt7lPfj-ePBB6JqSKaVE3VVfxZQRxqacppJxcYZGjAqWMJ5m56eby0s06fsliSMIZTQfob8ZfvW_sMLP3roB3-tB9zBg7Qwu_HqzHfRgvcMv2ukO1hAt7813PHDrAy4dhG6XlG1rG7vX5mAg6AEMrkAHZ12HbQz7hV0BLk0Hx9IoXKGLVq96mBz3GH3Oy4_iManeHp6KWZU0TNEhYW2a5bSRVMomJSkHQyiYViqtuRLAU2VMJnJDcpY1apEbKlmugSiQUV5QPka3h95N8D9b6Id66bfBxZc1E4IRleU5jy5ycDXB932Att4Eu9ZhV1NS7xHXEXG9R1wfEcfIzSFiAeBkV0JlSgr-D1mlduw</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Kim, Jingyeom</creator><creator>Kim, Doyeon</creator><creator>Lee, Joohyung</creator><creator>Hwang, Jungyeon</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7257-245X</orcidid><orcidid>https://orcid.org/0000-0002-6484-8575</orcidid><orcidid>https://orcid.org/0000-0003-1102-3905</orcidid></search><sort><creationdate>20220501</creationdate><title>A Novel Joint Dataset and Computation Management Scheme for Energy-Efficient Federated Learning in Mobile Edge Computing</title><author>Kim, Jingyeom ; Kim, Doyeon ; Lee, Joohyung ; Hwang, Jungyeon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-2f4581c7177c4043ed01edf79aa396e349dd568d0825c9b8d1728ae09e796eb13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Analytical models</topic><topic>Computational modeling</topic><topic>Cost function</topic><topic>Datasets</topic><topic>Edge computing</topic><topic>Energy consumption</topic><topic>energy efficiency</topic><topic>Federated learning</topic><topic>Mathematical models</topic><topic>Mobile computing</topic><topic>mobile edge computing</topic><topic>Performance evaluation</topic><topic>Resource management</topic><topic>Servers</topic><topic>Training</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Jingyeom</creatorcontrib><creatorcontrib>Kim, Doyeon</creatorcontrib><creatorcontrib>Lee, Joohyung</creatorcontrib><creatorcontrib>Hwang, Jungyeon</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE wireless communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kim, Jingyeom</au><au>Kim, Doyeon</au><au>Lee, Joohyung</au><au>Hwang, Jungyeon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Joint Dataset and Computation Management Scheme for Energy-Efficient Federated Learning in Mobile Edge Computing</atitle><jtitle>IEEE wireless communications letters</jtitle><stitle>LWC</stitle><date>2022-05-01</date><risdate>2022</risdate><volume>11</volume><issue>5</issue><spage>898</spage><epage>902</epage><pages>898-902</pages><issn>2162-2337</issn><eissn>2162-2345</eissn><coden>IWCLAF</coden><abstract>In this letter, a novel joint dataset and computation management (DCM) scheme for energy-efficient federated learning (FL) in mobile edge computing (MEC) is proposed. For this purpose, with respect to the amount of dataset and computation resources, we rigorously formulated analytical models for i) learning efficiency, which considers the estimated global accuracy tendency according to the amount of dataset and service latency, and ii) the overall energy consumption of FL participants, including local training and model parameter transmission. To consider the trade-off between these two factors in the FL procedure with MEC, a theoretical framework for the DCM problem that jointly optimizes the amount of dataset and the computation resources used for local training over multiple FL clients was designed. Additionally, the extensive simulation-based performance evaluations validate the superior performance of the proposed DCM; compared to the various benchmarks in terms of the proposed cost function and test accuracy on the MNIST dataset with independent identically distributed (IID) / non-IID settings.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LWC.2022.3147236</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-7257-245X</orcidid><orcidid>https://orcid.org/0000-0002-6484-8575</orcidid><orcidid>https://orcid.org/0000-0003-1102-3905</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2162-2337 |
ispartof | IEEE wireless communications letters, 2022-05, Vol.11 (5), p.898-902 |
issn | 2162-2337 2162-2345 |
language | eng |
recordid | cdi_ieee_primary_9695976 |
source | IEEE Electronic Library (IEL) |
subjects | Accuracy Analytical models Computational modeling Cost function Datasets Edge computing Energy consumption energy efficiency Federated learning Mathematical models Mobile computing mobile edge computing Performance evaluation Resource management Servers Training Wireless communication |
title | A Novel Joint Dataset and Computation Management Scheme for Energy-Efficient Federated Learning in Mobile Edge Computing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T21%3A46%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Joint%20Dataset%20and%20Computation%20Management%20Scheme%20for%20Energy-Efficient%20Federated%20Learning%20in%20Mobile%20Edge%20Computing&rft.jtitle=IEEE%20wireless%20communications%20letters&rft.au=Kim,%20Jingyeom&rft.date=2022-05-01&rft.volume=11&rft.issue=5&rft.spage=898&rft.epage=902&rft.pages=898-902&rft.issn=2162-2337&rft.eissn=2162-2345&rft.coden=IWCLAF&rft_id=info:doi/10.1109/LWC.2022.3147236&rft_dat=%3Cproquest_RIE%3E2662095883%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2662095883&rft_id=info:pmid/&rft_ieee_id=9695976&rfr_iscdi=true |