Single-Crystal Quality Detection and Evaluation Algorithms Applied to Roller Mill Orientation Instrument
The roller mill orientation instrument (RMOI) integrates the processing and the orientation of single-crystal bars. This type of equipment realizes the integration of two processes: grinding of the single-crystal ingot and orientation of the single-crystal bar. This integration enhances production e...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on instrumentation and measurement 2022, Vol.71, p.1-14 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on instrumentation and measurement |
container_volume | 71 |
creator | Guan, Shouping Wang, Wenqi Guan, Tianyi |
description | The roller mill orientation instrument (RMOI) integrates the processing and the orientation of single-crystal bars. This type of equipment realizes the integration of two processes: grinding of the single-crystal ingot and orientation of the single-crystal bar. This integration enhances production efficiency and the precision of the orientation. However, this type of approach has two significant constraints: 1) there is no quality detection algorithm for the plane of the crystal bar; it is, therefore, currently necessary to randomly find a crystal plane for orientation, which means that there is no guarantee of the quality of the plane after cutting and 2) there is a lack of evaluation methods to determine the overall quality of the crystal bar. This affects the production process and the requirements for the quality of the crystal bar and further affects the popularization and application of the equipment. Here, to overcome these constraints, we first propose a deep learning 1-D convolutional neural network (1-D-CNN) algorithm to perform feature extraction and supervised classification based on the rocking curve of the single crystal. In sharp contrast to the shallow learning method support vector machine (SVM), SVM feature extraction is insufficient, and the accuracy is low. The average accuracy of 1-D-CNN is 92.00%. This realizes the quality requirements for the successful detection of the crystal plane. Next, using the obtained quality detection results of each crystal plane, a hybrid algorithm combining improved Canopy (ICanopy) and {K} -means algorithms is presented, which improved the average accuracy by 10% compared with the traditional Canopy- {K} -means algorithm, and the {k} -nearest neighbor ( {k} NN) algorithm is further utilized. Finally, an ICanopy- {K} -means- {k} NN algorithm is formed, which realizes the overall quality evaluation of the crystal bar under various situations, and the average accuracy increases by 3.33%-90%. The effectiveness of the proposed algorithms is demonstrated by the analysis of results obtained |
doi_str_mv | 10.1109/TIM.2022.3146623 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9693910</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9693910</ieee_id><sourcerecordid>2633042467</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-c9d44ae829bd4aef5b775802647dfe0912c62218d40b54c826565c732e47a3093</originalsourceid><addsrcrecordid>eNo9kE1LAzEURYMoWKt7wU3A9dR8TTJZllq10FLUug7pTKZNSWfGJCP035va4upx4dz3HgeAe4xGGCP5tJotRgQRMqKYcU7oBRjgPBeZTOESDBDCRSZZzq_BTQg7hJDgTAzA9tM2G2eyiT-EqB1877Wz8QCfTTRltG0DdVPB6Y92vf6LY7dpvY3bfYDjrnPWVDC28KN1zni4sM7BpbemiSd61oTo-33Kt-Cq1i6Yu_Mcgq-X6Wryls2Xr7PJeJ6VROKYlbJiTJuCyHWVZp2vhcgLRNKzVW2QxKTkhOCiYmids7IgPOd5KSgxTGiKJB2Cx9PezrffvQlR7dreN-mkIpxSxAjjIlHoRJW-DcGbWnXe7rU_KIzU0adKPtXRpzr7TJWHU8UaY_5xySWVGNFflNdxhQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2633042467</pqid></control><display><type>article</type><title>Single-Crystal Quality Detection and Evaluation Algorithms Applied to Roller Mill Orientation Instrument</title><source>IEEE Xplore</source><creator>Guan, Shouping ; Wang, Wenqi ; Guan, Tianyi</creator><creatorcontrib>Guan, Shouping ; Wang, Wenqi ; Guan, Tianyi</creatorcontrib><description><![CDATA[The roller mill orientation instrument (RMOI) integrates the processing and the orientation of single-crystal bars. This type of equipment realizes the integration of two processes: grinding of the single-crystal ingot and orientation of the single-crystal bar. This integration enhances production efficiency and the precision of the orientation. However, this type of approach has two significant constraints: 1) there is no quality detection algorithm for the plane of the crystal bar; it is, therefore, currently necessary to randomly find a crystal plane for orientation, which means that there is no guarantee of the quality of the plane after cutting and 2) there is a lack of evaluation methods to determine the overall quality of the crystal bar. This affects the production process and the requirements for the quality of the crystal bar and further affects the popularization and application of the equipment. Here, to overcome these constraints, we first propose a deep learning 1-D convolutional neural network (1-D-CNN) algorithm to perform feature extraction and supervised classification based on the rocking curve of the single crystal. In sharp contrast to the shallow learning method support vector machine (SVM), SVM feature extraction is insufficient, and the accuracy is low. The average accuracy of 1-D-CNN is 92.00%. This realizes the quality requirements for the successful detection of the crystal plane. Next, using the obtained quality detection results of each crystal plane, a hybrid algorithm combining improved Canopy (ICanopy) and <inline-formula> <tex-math notation="LaTeX">{K} </tex-math></inline-formula>-means algorithms is presented, which improved the average accuracy by 10% compared with the traditional Canopy-<inline-formula> <tex-math notation="LaTeX">{K} </tex-math></inline-formula>-means algorithm, and the <inline-formula> <tex-math notation="LaTeX">{k} </tex-math></inline-formula>-nearest neighbor (<inline-formula> <tex-math notation="LaTeX">{k} </tex-math></inline-formula>NN) algorithm is further utilized. Finally, an ICanopy-<inline-formula> <tex-math notation="LaTeX">{K} </tex-math></inline-formula>-means-<inline-formula> <tex-math notation="LaTeX">{k} </tex-math></inline-formula>NN algorithm is formed, which realizes the overall quality evaluation of the crystal bar under various situations, and the average accuracy increases by 3.33%-90%. The effectiveness of the proposed algorithms is demonstrated by the analysis of results obtained from practical data.]]></description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2022.3146623</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>1-D convolutional neural network (1-D-CNN) ; <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">k -nearest neighbor (<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">k NN) algorithm ; Accuracy ; Algorithms ; Artificial neural networks ; Bars ; Canopies ; Canopy-<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">K -means algorithm ; Clustering algorithms ; crystal bar quality evaluation ; crystal plane quality detection ; Crystal structure ; Crystals ; Deep learning ; Feature extraction ; Instruments ; Machine learning ; Orientation ; Production ; Quality assessment ; roller mill orientation instrument (RMOI) ; Roller mills (grinders) ; Servomotors ; Signal processing algorithms ; Single crystals ; Support vector machines ; Van Arkel process</subject><ispartof>IEEE transactions on instrumentation and measurement, 2022, Vol.71, p.1-14</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-c9d44ae829bd4aef5b775802647dfe0912c62218d40b54c826565c732e47a3093</citedby><cites>FETCH-LOGICAL-c291t-c9d44ae829bd4aef5b775802647dfe0912c62218d40b54c826565c732e47a3093</cites><orcidid>0000-0001-6471-2056 ; 0000-0002-7306-4297 ; 0000-0003-4005-1585</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9693910$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9693910$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Guan, Shouping</creatorcontrib><creatorcontrib>Wang, Wenqi</creatorcontrib><creatorcontrib>Guan, Tianyi</creatorcontrib><title>Single-Crystal Quality Detection and Evaluation Algorithms Applied to Roller Mill Orientation Instrument</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description><![CDATA[The roller mill orientation instrument (RMOI) integrates the processing and the orientation of single-crystal bars. This type of equipment realizes the integration of two processes: grinding of the single-crystal ingot and orientation of the single-crystal bar. This integration enhances production efficiency and the precision of the orientation. However, this type of approach has two significant constraints: 1) there is no quality detection algorithm for the plane of the crystal bar; it is, therefore, currently necessary to randomly find a crystal plane for orientation, which means that there is no guarantee of the quality of the plane after cutting and 2) there is a lack of evaluation methods to determine the overall quality of the crystal bar. This affects the production process and the requirements for the quality of the crystal bar and further affects the popularization and application of the equipment. Here, to overcome these constraints, we first propose a deep learning 1-D convolutional neural network (1-D-CNN) algorithm to perform feature extraction and supervised classification based on the rocking curve of the single crystal. In sharp contrast to the shallow learning method support vector machine (SVM), SVM feature extraction is insufficient, and the accuracy is low. The average accuracy of 1-D-CNN is 92.00%. This realizes the quality requirements for the successful detection of the crystal plane. Next, using the obtained quality detection results of each crystal plane, a hybrid algorithm combining improved Canopy (ICanopy) and <inline-formula> <tex-math notation="LaTeX">{K} </tex-math></inline-formula>-means algorithms is presented, which improved the average accuracy by 10% compared with the traditional Canopy-<inline-formula> <tex-math notation="LaTeX">{K} </tex-math></inline-formula>-means algorithm, and the <inline-formula> <tex-math notation="LaTeX">{k} </tex-math></inline-formula>-nearest neighbor (<inline-formula> <tex-math notation="LaTeX">{k} </tex-math></inline-formula>NN) algorithm is further utilized. Finally, an ICanopy-<inline-formula> <tex-math notation="LaTeX">{K} </tex-math></inline-formula>-means-<inline-formula> <tex-math notation="LaTeX">{k} </tex-math></inline-formula>NN algorithm is formed, which realizes the overall quality evaluation of the crystal bar under various situations, and the average accuracy increases by 3.33%-90%. The effectiveness of the proposed algorithms is demonstrated by the analysis of results obtained from practical data.]]></description><subject>1-D convolutional neural network (1-D-CNN)</subject><subject><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">k -nearest neighbor (<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">k NN) algorithm</subject><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Bars</subject><subject>Canopies</subject><subject>Canopy-<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">K -means algorithm</subject><subject>Clustering algorithms</subject><subject>crystal bar quality evaluation</subject><subject>crystal plane quality detection</subject><subject>Crystal structure</subject><subject>Crystals</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>Instruments</subject><subject>Machine learning</subject><subject>Orientation</subject><subject>Production</subject><subject>Quality assessment</subject><subject>roller mill orientation instrument (RMOI)</subject><subject>Roller mills (grinders)</subject><subject>Servomotors</subject><subject>Signal processing algorithms</subject><subject>Single crystals</subject><subject>Support vector machines</subject><subject>Van Arkel process</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEURYMoWKt7wU3A9dR8TTJZllq10FLUug7pTKZNSWfGJCP035va4upx4dz3HgeAe4xGGCP5tJotRgQRMqKYcU7oBRjgPBeZTOESDBDCRSZZzq_BTQg7hJDgTAzA9tM2G2eyiT-EqB1877Wz8QCfTTRltG0DdVPB6Y92vf6LY7dpvY3bfYDjrnPWVDC28KN1zni4sM7BpbemiSd61oTo-33Kt-Cq1i6Yu_Mcgq-X6Wryls2Xr7PJeJ6VROKYlbJiTJuCyHWVZp2vhcgLRNKzVW2QxKTkhOCiYmids7IgPOd5KSgxTGiKJB2Cx9PezrffvQlR7dreN-mkIpxSxAjjIlHoRJW-DcGbWnXe7rU_KIzU0adKPtXRpzr7TJWHU8UaY_5xySWVGNFflNdxhQ</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Guan, Shouping</creator><creator>Wang, Wenqi</creator><creator>Guan, Tianyi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6471-2056</orcidid><orcidid>https://orcid.org/0000-0002-7306-4297</orcidid><orcidid>https://orcid.org/0000-0003-4005-1585</orcidid></search><sort><creationdate>2022</creationdate><title>Single-Crystal Quality Detection and Evaluation Algorithms Applied to Roller Mill Orientation Instrument</title><author>Guan, Shouping ; Wang, Wenqi ; Guan, Tianyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-c9d44ae829bd4aef5b775802647dfe0912c62218d40b54c826565c732e47a3093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>1-D convolutional neural network (1-D-CNN)</topic><topic><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">k -nearest neighbor (<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">k NN) algorithm</topic><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Bars</topic><topic>Canopies</topic><topic>Canopy-<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">K -means algorithm</topic><topic>Clustering algorithms</topic><topic>crystal bar quality evaluation</topic><topic>crystal plane quality detection</topic><topic>Crystal structure</topic><topic>Crystals</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>Instruments</topic><topic>Machine learning</topic><topic>Orientation</topic><topic>Production</topic><topic>Quality assessment</topic><topic>roller mill orientation instrument (RMOI)</topic><topic>Roller mills (grinders)</topic><topic>Servomotors</topic><topic>Signal processing algorithms</topic><topic>Single crystals</topic><topic>Support vector machines</topic><topic>Van Arkel process</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guan, Shouping</creatorcontrib><creatorcontrib>Wang, Wenqi</creatorcontrib><creatorcontrib>Guan, Tianyi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Guan, Shouping</au><au>Wang, Wenqi</au><au>Guan, Tianyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single-Crystal Quality Detection and Evaluation Algorithms Applied to Roller Mill Orientation Instrument</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2022</date><risdate>2022</risdate><volume>71</volume><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract><![CDATA[The roller mill orientation instrument (RMOI) integrates the processing and the orientation of single-crystal bars. This type of equipment realizes the integration of two processes: grinding of the single-crystal ingot and orientation of the single-crystal bar. This integration enhances production efficiency and the precision of the orientation. However, this type of approach has two significant constraints: 1) there is no quality detection algorithm for the plane of the crystal bar; it is, therefore, currently necessary to randomly find a crystal plane for orientation, which means that there is no guarantee of the quality of the plane after cutting and 2) there is a lack of evaluation methods to determine the overall quality of the crystal bar. This affects the production process and the requirements for the quality of the crystal bar and further affects the popularization and application of the equipment. Here, to overcome these constraints, we first propose a deep learning 1-D convolutional neural network (1-D-CNN) algorithm to perform feature extraction and supervised classification based on the rocking curve of the single crystal. In sharp contrast to the shallow learning method support vector machine (SVM), SVM feature extraction is insufficient, and the accuracy is low. The average accuracy of 1-D-CNN is 92.00%. This realizes the quality requirements for the successful detection of the crystal plane. Next, using the obtained quality detection results of each crystal plane, a hybrid algorithm combining improved Canopy (ICanopy) and <inline-formula> <tex-math notation="LaTeX">{K} </tex-math></inline-formula>-means algorithms is presented, which improved the average accuracy by 10% compared with the traditional Canopy-<inline-formula> <tex-math notation="LaTeX">{K} </tex-math></inline-formula>-means algorithm, and the <inline-formula> <tex-math notation="LaTeX">{k} </tex-math></inline-formula>-nearest neighbor (<inline-formula> <tex-math notation="LaTeX">{k} </tex-math></inline-formula>NN) algorithm is further utilized. Finally, an ICanopy-<inline-formula> <tex-math notation="LaTeX">{K} </tex-math></inline-formula>-means-<inline-formula> <tex-math notation="LaTeX">{k} </tex-math></inline-formula>NN algorithm is formed, which realizes the overall quality evaluation of the crystal bar under various situations, and the average accuracy increases by 3.33%-90%. The effectiveness of the proposed algorithms is demonstrated by the analysis of results obtained from practical data.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2022.3146623</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-6471-2056</orcidid><orcidid>https://orcid.org/0000-0002-7306-4297</orcidid><orcidid>https://orcid.org/0000-0003-4005-1585</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9456 |
ispartof | IEEE transactions on instrumentation and measurement, 2022, Vol.71, p.1-14 |
issn | 0018-9456 1557-9662 |
language | eng |
recordid | cdi_ieee_primary_9693910 |
source | IEEE Xplore |
subjects | 1-D convolutional neural network (1-D-CNN) <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">k -nearest neighbor (<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">k NN) algorithm Accuracy Algorithms Artificial neural networks Bars Canopies Canopy-<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">K -means algorithm Clustering algorithms crystal bar quality evaluation crystal plane quality detection Crystal structure Crystals Deep learning Feature extraction Instruments Machine learning Orientation Production Quality assessment roller mill orientation instrument (RMOI) Roller mills (grinders) Servomotors Signal processing algorithms Single crystals Support vector machines Van Arkel process |
title | Single-Crystal Quality Detection and Evaluation Algorithms Applied to Roller Mill Orientation Instrument |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T18%3A14%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-Crystal%20Quality%20Detection%20and%20Evaluation%20Algorithms%20Applied%20to%20Roller%20Mill%20Orientation%20Instrument&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Guan,%20Shouping&rft.date=2022&rft.volume=71&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2022.3146623&rft_dat=%3Cproquest_RIE%3E2633042467%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2633042467&rft_id=info:pmid/&rft_ieee_id=9693910&rfr_iscdi=true |