Two Novel Semi-/Auto-Adaptive SNR Algorithms to Efficiently Train Deep Neural SPA Decoders
In the past few years, deep learning has been widely used in various fields due to its outstanding progress. One of the latest applications of deep learning is to use a neural network (NN) with trainable multiplicative weights to design decoders for error-correcting codes. High quality data are esse...
Gespeichert in:
Veröffentlicht in: | IEEE access 2022, Vol.10, p.12607-12618 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12618 |
---|---|
container_issue | |
container_start_page | 12607 |
container_title | IEEE access |
container_volume | 10 |
creator | Huang, Chun-Ming |
description | In the past few years, deep learning has been widely used in various fields due to its outstanding progress. One of the latest applications of deep learning is to use a neural network (NN) with trainable multiplicative weights to design decoders for error-correcting codes. High quality data are essential for deep learning to train robust NN models. In this study, two novel semi-/auto-adaptive SNR algorithms are proposed to efficiently train the neural decoders based on the Sum-Product Algorithm (SPA). For illustration, several neural SPA decoders for the Bose-Chaudhuri-Hocquenghem (BCH) code and low-density parity-check (LDPC) code have been constructed as examples. Simulation results show that, compared with the original neural decoders, the performance of these neural decoders trained by the proposed algorithms can be improved in the range of 0.2 to 0.6 dB. Moreover, the training time required for these decoders to achieve convergence can be reduced by up to 28.8% for the BCH code, and up to 35.6% for the LDPC code, without increasing decoding complexity. |
doi_str_mv | 10.1109/ACCESS.2022.3146336 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9693899</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9693899</ieee_id><doaj_id>oai_doaj_org_article_25104cff5fe74903ac517d243d253260</doaj_id><sourcerecordid>2625366385</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-ab134c067ea5fec07fb5f875b0853a8f33dc6643fbc4942347c96f116623661b3</originalsourceid><addsrcrecordid>eNpNUcFqGzEQFaWFBjdfkIug53UkjTS7Oi6u2waCG2L30ovQaqVUZm252nVC_r5KN4TOZWYe894beIRccbbknOnrdrVab7dLwYRYApcIgO_IheCoK1CA7_-bP5LLcdyzUk2BVH1Bfu2eEt2kRz_QrT_E6ro9T6lqe3ua4qOn2809bYeHlOP0-zDSKdF1CNFFf5yGZ7rLNh7pF-9PdOPP2RaNu7bsLvU-j5_Ih2CH0V--9gX5-XW9W32vbn98u1m1t5UD1UyV7ThIx7D2VgXvWB06FZpadaxRYJsA0DtECaFzUksBsnYaA-eIAhB5BwtyM-v2ye7NKceDzc8m2Wj-ASk_GJun6AZvhOJMuhCKUS01A-sUr3shoRcKBLKi9XnWOuX05-zHyezTOR_L-0ZguUGE8tWCwHzlchrH7MObK2fmJRMzZ2JeMjGvmRTW1cyK3vs3hkYNjdbwF5xjhO8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2625366385</pqid></control><display><type>article</type><title>Two Novel Semi-/Auto-Adaptive SNR Algorithms to Efficiently Train Deep Neural SPA Decoders</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Huang, Chun-Ming</creator><creatorcontrib>Huang, Chun-Ming</creatorcontrib><description>In the past few years, deep learning has been widely used in various fields due to its outstanding progress. One of the latest applications of deep learning is to use a neural network (NN) with trainable multiplicative weights to design decoders for error-correcting codes. High quality data are essential for deep learning to train robust NN models. In this study, two novel semi-/auto-adaptive SNR algorithms are proposed to efficiently train the neural decoders based on the Sum-Product Algorithm (SPA). For illustration, several neural SPA decoders for the Bose-Chaudhuri-Hocquenghem (BCH) code and low-density parity-check (LDPC) code have been constructed as examples. Simulation results show that, compared with the original neural decoders, the performance of these neural decoders trained by the proposed algorithms can be improved in the range of 0.2 to 0.6 dB. Moreover, the training time required for these decoders to achieve convergence can be reduced by up to 28.8% for the BCH code, and up to 35.6% for the LDPC code, without increasing decoding complexity.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3146336</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptive algorithms ; Algorithms ; Artificial neural networks ; Bose-Chaudhuri-Hocquenghem (BCH) code ; Codes ; Decoders ; Decoding ; Deep learning ; Error correcting codes ; Error correction ; low-density parity-check (LDPC) ; Machine learning ; Neural network (NN) ; Neural networks ; semi-/auto-adaptive SNR algorithm ; Signal to noise ratio ; Simulation ; sum-product algorithm (SPA) ; Training</subject><ispartof>IEEE access, 2022, Vol.10, p.12607-12618</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c358t-ab134c067ea5fec07fb5f875b0853a8f33dc6643fbc4942347c96f116623661b3</cites><orcidid>0000-0001-7748-9404</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9693899$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Huang, Chun-Ming</creatorcontrib><title>Two Novel Semi-/Auto-Adaptive SNR Algorithms to Efficiently Train Deep Neural SPA Decoders</title><title>IEEE access</title><addtitle>Access</addtitle><description>In the past few years, deep learning has been widely used in various fields due to its outstanding progress. One of the latest applications of deep learning is to use a neural network (NN) with trainable multiplicative weights to design decoders for error-correcting codes. High quality data are essential for deep learning to train robust NN models. In this study, two novel semi-/auto-adaptive SNR algorithms are proposed to efficiently train the neural decoders based on the Sum-Product Algorithm (SPA). For illustration, several neural SPA decoders for the Bose-Chaudhuri-Hocquenghem (BCH) code and low-density parity-check (LDPC) code have been constructed as examples. Simulation results show that, compared with the original neural decoders, the performance of these neural decoders trained by the proposed algorithms can be improved in the range of 0.2 to 0.6 dB. Moreover, the training time required for these decoders to achieve convergence can be reduced by up to 28.8% for the BCH code, and up to 35.6% for the LDPC code, without increasing decoding complexity.</description><subject>Adaptive algorithms</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Bose-Chaudhuri-Hocquenghem (BCH) code</subject><subject>Codes</subject><subject>Decoders</subject><subject>Decoding</subject><subject>Deep learning</subject><subject>Error correcting codes</subject><subject>Error correction</subject><subject>low-density parity-check (LDPC)</subject><subject>Machine learning</subject><subject>Neural network (NN)</subject><subject>Neural networks</subject><subject>semi-/auto-adaptive SNR algorithm</subject><subject>Signal to noise ratio</subject><subject>Simulation</subject><subject>sum-product algorithm (SPA)</subject><subject>Training</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFqGzEQFaWFBjdfkIug53UkjTS7Oi6u2waCG2L30ovQaqVUZm252nVC_r5KN4TOZWYe894beIRccbbknOnrdrVab7dLwYRYApcIgO_IheCoK1CA7_-bP5LLcdyzUk2BVH1Bfu2eEt2kRz_QrT_E6ro9T6lqe3ua4qOn2809bYeHlOP0-zDSKdF1CNFFf5yGZ7rLNh7pF-9PdOPP2RaNu7bsLvU-j5_Ih2CH0V--9gX5-XW9W32vbn98u1m1t5UD1UyV7ThIx7D2VgXvWB06FZpadaxRYJsA0DtECaFzUksBsnYaA-eIAhB5BwtyM-v2ye7NKceDzc8m2Wj-ASk_GJun6AZvhOJMuhCKUS01A-sUr3shoRcKBLKi9XnWOuX05-zHyezTOR_L-0ZguUGE8tWCwHzlchrH7MObK2fmJRMzZ2JeMjGvmRTW1cyK3vs3hkYNjdbwF5xjhO8</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Huang, Chun-Ming</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7748-9404</orcidid></search><sort><creationdate>2022</creationdate><title>Two Novel Semi-/Auto-Adaptive SNR Algorithms to Efficiently Train Deep Neural SPA Decoders</title><author>Huang, Chun-Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-ab134c067ea5fec07fb5f875b0853a8f33dc6643fbc4942347c96f116623661b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptive algorithms</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Bose-Chaudhuri-Hocquenghem (BCH) code</topic><topic>Codes</topic><topic>Decoders</topic><topic>Decoding</topic><topic>Deep learning</topic><topic>Error correcting codes</topic><topic>Error correction</topic><topic>low-density parity-check (LDPC)</topic><topic>Machine learning</topic><topic>Neural network (NN)</topic><topic>Neural networks</topic><topic>semi-/auto-adaptive SNR algorithm</topic><topic>Signal to noise ratio</topic><topic>Simulation</topic><topic>sum-product algorithm (SPA)</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Chun-Ming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Chun-Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two Novel Semi-/Auto-Adaptive SNR Algorithms to Efficiently Train Deep Neural SPA Decoders</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>12607</spage><epage>12618</epage><pages>12607-12618</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In the past few years, deep learning has been widely used in various fields due to its outstanding progress. One of the latest applications of deep learning is to use a neural network (NN) with trainable multiplicative weights to design decoders for error-correcting codes. High quality data are essential for deep learning to train robust NN models. In this study, two novel semi-/auto-adaptive SNR algorithms are proposed to efficiently train the neural decoders based on the Sum-Product Algorithm (SPA). For illustration, several neural SPA decoders for the Bose-Chaudhuri-Hocquenghem (BCH) code and low-density parity-check (LDPC) code have been constructed as examples. Simulation results show that, compared with the original neural decoders, the performance of these neural decoders trained by the proposed algorithms can be improved in the range of 0.2 to 0.6 dB. Moreover, the training time required for these decoders to achieve convergence can be reduced by up to 28.8% for the BCH code, and up to 35.6% for the LDPC code, without increasing decoding complexity.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3146336</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7748-9404</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2022, Vol.10, p.12607-12618 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_9693899 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Adaptive algorithms Algorithms Artificial neural networks Bose-Chaudhuri-Hocquenghem (BCH) code Codes Decoders Decoding Deep learning Error correcting codes Error correction low-density parity-check (LDPC) Machine learning Neural network (NN) Neural networks semi-/auto-adaptive SNR algorithm Signal to noise ratio Simulation sum-product algorithm (SPA) Training |
title | Two Novel Semi-/Auto-Adaptive SNR Algorithms to Efficiently Train Deep Neural SPA Decoders |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A44%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two%20Novel%20Semi-/Auto-Adaptive%20SNR%20Algorithms%20to%20Efficiently%20Train%20Deep%20Neural%20SPA%20Decoders&rft.jtitle=IEEE%20access&rft.au=Huang,%20Chun-Ming&rft.date=2022&rft.volume=10&rft.spage=12607&rft.epage=12618&rft.pages=12607-12618&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3146336&rft_dat=%3Cproquest_ieee_%3E2625366385%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2625366385&rft_id=info:pmid/&rft_ieee_id=9693899&rft_doaj_id=oai_doaj_org_article_25104cff5fe74903ac517d243d253260&rfr_iscdi=true |