Two Novel Semi-/Auto-Adaptive SNR Algorithms to Efficiently Train Deep Neural SPA Decoders

In the past few years, deep learning has been widely used in various fields due to its outstanding progress. One of the latest applications of deep learning is to use a neural network (NN) with trainable multiplicative weights to design decoders for error-correcting codes. High quality data are esse...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2022, Vol.10, p.12607-12618
1. Verfasser: Huang, Chun-Ming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12618
container_issue
container_start_page 12607
container_title IEEE access
container_volume 10
creator Huang, Chun-Ming
description In the past few years, deep learning has been widely used in various fields due to its outstanding progress. One of the latest applications of deep learning is to use a neural network (NN) with trainable multiplicative weights to design decoders for error-correcting codes. High quality data are essential for deep learning to train robust NN models. In this study, two novel semi-/auto-adaptive SNR algorithms are proposed to efficiently train the neural decoders based on the Sum-Product Algorithm (SPA). For illustration, several neural SPA decoders for the Bose-Chaudhuri-Hocquenghem (BCH) code and low-density parity-check (LDPC) code have been constructed as examples. Simulation results show that, compared with the original neural decoders, the performance of these neural decoders trained by the proposed algorithms can be improved in the range of 0.2 to 0.6 dB. Moreover, the training time required for these decoders to achieve convergence can be reduced by up to 28.8% for the BCH code, and up to 35.6% for the LDPC code, without increasing decoding complexity.
doi_str_mv 10.1109/ACCESS.2022.3146336
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9693899</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9693899</ieee_id><doaj_id>oai_doaj_org_article_25104cff5fe74903ac517d243d253260</doaj_id><sourcerecordid>2625366385</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-ab134c067ea5fec07fb5f875b0853a8f33dc6643fbc4942347c96f116623661b3</originalsourceid><addsrcrecordid>eNpNUcFqGzEQFaWFBjdfkIug53UkjTS7Oi6u2waCG2L30ovQaqVUZm252nVC_r5KN4TOZWYe894beIRccbbknOnrdrVab7dLwYRYApcIgO_IheCoK1CA7_-bP5LLcdyzUk2BVH1Bfu2eEt2kRz_QrT_E6ro9T6lqe3ua4qOn2809bYeHlOP0-zDSKdF1CNFFf5yGZ7rLNh7pF-9PdOPP2RaNu7bsLvU-j5_Ih2CH0V--9gX5-XW9W32vbn98u1m1t5UD1UyV7ThIx7D2VgXvWB06FZpadaxRYJsA0DtECaFzUksBsnYaA-eIAhB5BwtyM-v2ye7NKceDzc8m2Wj-ASk_GJun6AZvhOJMuhCKUS01A-sUr3shoRcKBLKi9XnWOuX05-zHyezTOR_L-0ZguUGE8tWCwHzlchrH7MObK2fmJRMzZ2JeMjGvmRTW1cyK3vs3hkYNjdbwF5xjhO8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2625366385</pqid></control><display><type>article</type><title>Two Novel Semi-/Auto-Adaptive SNR Algorithms to Efficiently Train Deep Neural SPA Decoders</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Huang, Chun-Ming</creator><creatorcontrib>Huang, Chun-Ming</creatorcontrib><description>In the past few years, deep learning has been widely used in various fields due to its outstanding progress. One of the latest applications of deep learning is to use a neural network (NN) with trainable multiplicative weights to design decoders for error-correcting codes. High quality data are essential for deep learning to train robust NN models. In this study, two novel semi-/auto-adaptive SNR algorithms are proposed to efficiently train the neural decoders based on the Sum-Product Algorithm (SPA). For illustration, several neural SPA decoders for the Bose-Chaudhuri-Hocquenghem (BCH) code and low-density parity-check (LDPC) code have been constructed as examples. Simulation results show that, compared with the original neural decoders, the performance of these neural decoders trained by the proposed algorithms can be improved in the range of 0.2 to 0.6 dB. Moreover, the training time required for these decoders to achieve convergence can be reduced by up to 28.8% for the BCH code, and up to 35.6% for the LDPC code, without increasing decoding complexity.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3146336</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptive algorithms ; Algorithms ; Artificial neural networks ; Bose-Chaudhuri-Hocquenghem (BCH) code ; Codes ; Decoders ; Decoding ; Deep learning ; Error correcting codes ; Error correction ; low-density parity-check (LDPC) ; Machine learning ; Neural network (NN) ; Neural networks ; semi-/auto-adaptive SNR algorithm ; Signal to noise ratio ; Simulation ; sum-product algorithm (SPA) ; Training</subject><ispartof>IEEE access, 2022, Vol.10, p.12607-12618</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c358t-ab134c067ea5fec07fb5f875b0853a8f33dc6643fbc4942347c96f116623661b3</cites><orcidid>0000-0001-7748-9404</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9693899$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Huang, Chun-Ming</creatorcontrib><title>Two Novel Semi-/Auto-Adaptive SNR Algorithms to Efficiently Train Deep Neural SPA Decoders</title><title>IEEE access</title><addtitle>Access</addtitle><description>In the past few years, deep learning has been widely used in various fields due to its outstanding progress. One of the latest applications of deep learning is to use a neural network (NN) with trainable multiplicative weights to design decoders for error-correcting codes. High quality data are essential for deep learning to train robust NN models. In this study, two novel semi-/auto-adaptive SNR algorithms are proposed to efficiently train the neural decoders based on the Sum-Product Algorithm (SPA). For illustration, several neural SPA decoders for the Bose-Chaudhuri-Hocquenghem (BCH) code and low-density parity-check (LDPC) code have been constructed as examples. Simulation results show that, compared with the original neural decoders, the performance of these neural decoders trained by the proposed algorithms can be improved in the range of 0.2 to 0.6 dB. Moreover, the training time required for these decoders to achieve convergence can be reduced by up to 28.8% for the BCH code, and up to 35.6% for the LDPC code, without increasing decoding complexity.</description><subject>Adaptive algorithms</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Bose-Chaudhuri-Hocquenghem (BCH) code</subject><subject>Codes</subject><subject>Decoders</subject><subject>Decoding</subject><subject>Deep learning</subject><subject>Error correcting codes</subject><subject>Error correction</subject><subject>low-density parity-check (LDPC)</subject><subject>Machine learning</subject><subject>Neural network (NN)</subject><subject>Neural networks</subject><subject>semi-/auto-adaptive SNR algorithm</subject><subject>Signal to noise ratio</subject><subject>Simulation</subject><subject>sum-product algorithm (SPA)</subject><subject>Training</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFqGzEQFaWFBjdfkIug53UkjTS7Oi6u2waCG2L30ovQaqVUZm252nVC_r5KN4TOZWYe894beIRccbbknOnrdrVab7dLwYRYApcIgO_IheCoK1CA7_-bP5LLcdyzUk2BVH1Bfu2eEt2kRz_QrT_E6ro9T6lqe3ua4qOn2809bYeHlOP0-zDSKdF1CNFFf5yGZ7rLNh7pF-9PdOPP2RaNu7bsLvU-j5_Ih2CH0V--9gX5-XW9W32vbn98u1m1t5UD1UyV7ThIx7D2VgXvWB06FZpadaxRYJsA0DtECaFzUksBsnYaA-eIAhB5BwtyM-v2ye7NKceDzc8m2Wj-ASk_GJun6AZvhOJMuhCKUS01A-sUr3shoRcKBLKi9XnWOuX05-zHyezTOR_L-0ZguUGE8tWCwHzlchrH7MObK2fmJRMzZ2JeMjGvmRTW1cyK3vs3hkYNjdbwF5xjhO8</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Huang, Chun-Ming</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7748-9404</orcidid></search><sort><creationdate>2022</creationdate><title>Two Novel Semi-/Auto-Adaptive SNR Algorithms to Efficiently Train Deep Neural SPA Decoders</title><author>Huang, Chun-Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-ab134c067ea5fec07fb5f875b0853a8f33dc6643fbc4942347c96f116623661b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptive algorithms</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Bose-Chaudhuri-Hocquenghem (BCH) code</topic><topic>Codes</topic><topic>Decoders</topic><topic>Decoding</topic><topic>Deep learning</topic><topic>Error correcting codes</topic><topic>Error correction</topic><topic>low-density parity-check (LDPC)</topic><topic>Machine learning</topic><topic>Neural network (NN)</topic><topic>Neural networks</topic><topic>semi-/auto-adaptive SNR algorithm</topic><topic>Signal to noise ratio</topic><topic>Simulation</topic><topic>sum-product algorithm (SPA)</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Chun-Ming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Chun-Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two Novel Semi-/Auto-Adaptive SNR Algorithms to Efficiently Train Deep Neural SPA Decoders</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>12607</spage><epage>12618</epage><pages>12607-12618</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In the past few years, deep learning has been widely used in various fields due to its outstanding progress. One of the latest applications of deep learning is to use a neural network (NN) with trainable multiplicative weights to design decoders for error-correcting codes. High quality data are essential for deep learning to train robust NN models. In this study, two novel semi-/auto-adaptive SNR algorithms are proposed to efficiently train the neural decoders based on the Sum-Product Algorithm (SPA). For illustration, several neural SPA decoders for the Bose-Chaudhuri-Hocquenghem (BCH) code and low-density parity-check (LDPC) code have been constructed as examples. Simulation results show that, compared with the original neural decoders, the performance of these neural decoders trained by the proposed algorithms can be improved in the range of 0.2 to 0.6 dB. Moreover, the training time required for these decoders to achieve convergence can be reduced by up to 28.8% for the BCH code, and up to 35.6% for the LDPC code, without increasing decoding complexity.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3146336</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7748-9404</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2022, Vol.10, p.12607-12618
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_9693899
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Adaptive algorithms
Algorithms
Artificial neural networks
Bose-Chaudhuri-Hocquenghem (BCH) code
Codes
Decoders
Decoding
Deep learning
Error correcting codes
Error correction
low-density parity-check (LDPC)
Machine learning
Neural network (NN)
Neural networks
semi-/auto-adaptive SNR algorithm
Signal to noise ratio
Simulation
sum-product algorithm (SPA)
Training
title Two Novel Semi-/Auto-Adaptive SNR Algorithms to Efficiently Train Deep Neural SPA Decoders
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A44%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two%20Novel%20Semi-/Auto-Adaptive%20SNR%20Algorithms%20to%20Efficiently%20Train%20Deep%20Neural%20SPA%20Decoders&rft.jtitle=IEEE%20access&rft.au=Huang,%20Chun-Ming&rft.date=2022&rft.volume=10&rft.spage=12607&rft.epage=12618&rft.pages=12607-12618&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3146336&rft_dat=%3Cproquest_ieee_%3E2625366385%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2625366385&rft_id=info:pmid/&rft_ieee_id=9693899&rft_doaj_id=oai_doaj_org_article_25104cff5fe74903ac517d243d253260&rfr_iscdi=true