Horizon-Independent Preconditioner Design for Linear Predictive Control
First-order optimizationsolvers, such as the fast gradient method (FGM), are increasingly being used to solve model predictive control problems in resource-constrained environments. Unfortunately, the convergence rate of these solvers is significantly affected by the conditioning of the problem data...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2023-01, Vol.68 (1), p.580-587 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 587 |
---|---|
container_issue | 1 |
container_start_page | 580 |
container_title | IEEE transactions on automatic control |
container_volume | 68 |
creator | McInerney, Ian Kerrigan, Eric C. Constantinides, George A. |
description | First-order optimizationsolvers, such as the fast gradient method (FGM), are increasingly being used to solve model predictive control problems in resource-constrained environments. Unfortunately, the convergence rate of these solvers is significantly affected by the conditioning of the problem data, with ill-conditioned problems requiring a large number of iterations. To reduce the number of iterations required, we present a simple method for computing a horizon-independent preconditioning matrix for the Hessian of the condensed problem. The preconditioner is based on the block Toeplitz structure of the Hessian. Horizon independence allows one to use only the predicted system and cost matrices to compute the preconditioner, instead of the full Hessian. The proposed preconditioner has equivalent performance to an optimal preconditioner in numerical examples, producing speedups between 2x and 9x for the FGM. Additionally, we derive horizon-independent spectral bounds for the Hessian in terms of the transfer function of the predicted system, and show how these can be used to compute a novel horizon-independent bound on the condition number for the preconditioned Hessian. |
doi_str_mv | 10.1109/TAC.2022.3145657 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9691890</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9691890</ieee_id><sourcerecordid>2758723304</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-4ebda8e145f0a21e2bc9ea12b159b5f9ed90a8745563d4217105b7640db8d75b3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wcuC56353CTHsmotFPRQzyG7mZWUmtRkK-ivN6XFywwDzzszPAjdEjwjBOuH9bydUUzpjBEuGiHP0IQIoWoqKDtHE4yJqjVVzSW6ynlTxoZzMkGLl5j8bwz1MjjYQSlhrN4S9DE4P_oYIFWPkP1HqIaYqpUPYNMBcL4f_TdUbQxjittrdDHYbYabU5-i9-endftSr14Xy3a-qnvK-Vhz6JxVUF4csKUEaNdrsIR2ROhODBqcxlZJLkTDHKdEEiw62XDsOuWk6NgU3R_37lL82kMezSbuUygnDZVCScoY5oXCR6pPMecEg9kl_2nTjyHYHHSZosscdJmTrhK5O0Y8APzjutFEacz-AFYiZb8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2758723304</pqid></control><display><type>article</type><title>Horizon-Independent Preconditioner Design for Linear Predictive Control</title><source>IEEE/IET Electronic Library (IEL)</source><creator>McInerney, Ian ; Kerrigan, Eric C. ; Constantinides, George A.</creator><creatorcontrib>McInerney, Ian ; Kerrigan, Eric C. ; Constantinides, George A.</creatorcontrib><description>First-order optimizationsolvers, such as the fast gradient method (FGM), are increasingly being used to solve model predictive control problems in resource-constrained environments. Unfortunately, the convergence rate of these solvers is significantly affected by the conditioning of the problem data, with ill-conditioned problems requiring a large number of iterations. To reduce the number of iterations required, we present a simple method for computing a horizon-independent preconditioning matrix for the Hessian of the condensed problem. The preconditioner is based on the block Toeplitz structure of the Hessian. Horizon independence allows one to use only the predicted system and cost matrices to compute the preconditioner, instead of the full Hessian. The proposed preconditioner has equivalent performance to an optimal preconditioner in numerical examples, producing speedups between 2x and 9x for the FGM. Additionally, we derive horizon-independent spectral bounds for the Hessian in terms of the transfer function of the predicted system, and show how these can be used to compute a novel horizon-independent bound on the condition number for the preconditioned Hessian.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2022.3145657</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Design optimization ; Eigenvalues and eigenfunctions ; Fast gradient method (FGM) ; Gradient methods ; Horizon ; Ill-conditioned problems (mathematics) ; Linear matrix inequalities ; model predictive control (MPC) ; Optimal control ; Optimization ; Preconditioning ; Predictive control ; Transfer functions</subject><ispartof>IEEE transactions on automatic control, 2023-01, Vol.68 (1), p.580-587</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-4ebda8e145f0a21e2bc9ea12b159b5f9ed90a8745563d4217105b7640db8d75b3</cites><orcidid>0000-0002-3967-1544 ; 0000-0002-0201-310X ; 0000-0003-2616-9771</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9691890$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9691890$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>McInerney, Ian</creatorcontrib><creatorcontrib>Kerrigan, Eric C.</creatorcontrib><creatorcontrib>Constantinides, George A.</creatorcontrib><title>Horizon-Independent Preconditioner Design for Linear Predictive Control</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>First-order optimizationsolvers, such as the fast gradient method (FGM), are increasingly being used to solve model predictive control problems in resource-constrained environments. Unfortunately, the convergence rate of these solvers is significantly affected by the conditioning of the problem data, with ill-conditioned problems requiring a large number of iterations. To reduce the number of iterations required, we present a simple method for computing a horizon-independent preconditioning matrix for the Hessian of the condensed problem. The preconditioner is based on the block Toeplitz structure of the Hessian. Horizon independence allows one to use only the predicted system and cost matrices to compute the preconditioner, instead of the full Hessian. The proposed preconditioner has equivalent performance to an optimal preconditioner in numerical examples, producing speedups between 2x and 9x for the FGM. Additionally, we derive horizon-independent spectral bounds for the Hessian in terms of the transfer function of the predicted system, and show how these can be used to compute a novel horizon-independent bound on the condition number for the preconditioned Hessian.</description><subject>Design optimization</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Fast gradient method (FGM)</subject><subject>Gradient methods</subject><subject>Horizon</subject><subject>Ill-conditioned problems (mathematics)</subject><subject>Linear matrix inequalities</subject><subject>model predictive control (MPC)</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Preconditioning</subject><subject>Predictive control</subject><subject>Transfer functions</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wcuC56353CTHsmotFPRQzyG7mZWUmtRkK-ivN6XFywwDzzszPAjdEjwjBOuH9bydUUzpjBEuGiHP0IQIoWoqKDtHE4yJqjVVzSW6ynlTxoZzMkGLl5j8bwz1MjjYQSlhrN4S9DE4P_oYIFWPkP1HqIaYqpUPYNMBcL4f_TdUbQxjittrdDHYbYabU5-i9-endftSr14Xy3a-qnvK-Vhz6JxVUF4csKUEaNdrsIR2ROhODBqcxlZJLkTDHKdEEiw62XDsOuWk6NgU3R_37lL82kMezSbuUygnDZVCScoY5oXCR6pPMecEg9kl_2nTjyHYHHSZosscdJmTrhK5O0Y8APzjutFEacz-AFYiZb8</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>McInerney, Ian</creator><creator>Kerrigan, Eric C.</creator><creator>Constantinides, George A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3967-1544</orcidid><orcidid>https://orcid.org/0000-0002-0201-310X</orcidid><orcidid>https://orcid.org/0000-0003-2616-9771</orcidid></search><sort><creationdate>202301</creationdate><title>Horizon-Independent Preconditioner Design for Linear Predictive Control</title><author>McInerney, Ian ; Kerrigan, Eric C. ; Constantinides, George A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-4ebda8e145f0a21e2bc9ea12b159b5f9ed90a8745563d4217105b7640db8d75b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Design optimization</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Fast gradient method (FGM)</topic><topic>Gradient methods</topic><topic>Horizon</topic><topic>Ill-conditioned problems (mathematics)</topic><topic>Linear matrix inequalities</topic><topic>model predictive control (MPC)</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Preconditioning</topic><topic>Predictive control</topic><topic>Transfer functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McInerney, Ian</creatorcontrib><creatorcontrib>Kerrigan, Eric C.</creatorcontrib><creatorcontrib>Constantinides, George A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>McInerney, Ian</au><au>Kerrigan, Eric C.</au><au>Constantinides, George A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Horizon-Independent Preconditioner Design for Linear Predictive Control</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2023-01</date><risdate>2023</risdate><volume>68</volume><issue>1</issue><spage>580</spage><epage>587</epage><pages>580-587</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>First-order optimizationsolvers, such as the fast gradient method (FGM), are increasingly being used to solve model predictive control problems in resource-constrained environments. Unfortunately, the convergence rate of these solvers is significantly affected by the conditioning of the problem data, with ill-conditioned problems requiring a large number of iterations. To reduce the number of iterations required, we present a simple method for computing a horizon-independent preconditioning matrix for the Hessian of the condensed problem. The preconditioner is based on the block Toeplitz structure of the Hessian. Horizon independence allows one to use only the predicted system and cost matrices to compute the preconditioner, instead of the full Hessian. The proposed preconditioner has equivalent performance to an optimal preconditioner in numerical examples, producing speedups between 2x and 9x for the FGM. Additionally, we derive horizon-independent spectral bounds for the Hessian in terms of the transfer function of the predicted system, and show how these can be used to compute a novel horizon-independent bound on the condition number for the preconditioned Hessian.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2022.3145657</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3967-1544</orcidid><orcidid>https://orcid.org/0000-0002-0201-310X</orcidid><orcidid>https://orcid.org/0000-0003-2616-9771</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 2023-01, Vol.68 (1), p.580-587 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_ieee_primary_9691890 |
source | IEEE/IET Electronic Library (IEL) |
subjects | Design optimization Eigenvalues and eigenfunctions Fast gradient method (FGM) Gradient methods Horizon Ill-conditioned problems (mathematics) Linear matrix inequalities model predictive control (MPC) Optimal control Optimization Preconditioning Predictive control Transfer functions |
title | Horizon-Independent Preconditioner Design for Linear Predictive Control |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T13%3A59%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Horizon-Independent%20Preconditioner%20Design%20for%20Linear%20Predictive%20Control&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=McInerney,%20Ian&rft.date=2023-01&rft.volume=68&rft.issue=1&rft.spage=580&rft.epage=587&rft.pages=580-587&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2022.3145657&rft_dat=%3Cproquest_RIE%3E2758723304%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2758723304&rft_id=info:pmid/&rft_ieee_id=9691890&rfr_iscdi=true |