Horizon-Independent Preconditioner Design for Linear Predictive Control

First-order optimizationsolvers, such as the fast gradient method (FGM), are increasingly being used to solve model predictive control problems in resource-constrained environments. Unfortunately, the convergence rate of these solvers is significantly affected by the conditioning of the problem data...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2023-01, Vol.68 (1), p.580-587
Hauptverfasser: McInerney, Ian, Kerrigan, Eric C., Constantinides, George A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 587
container_issue 1
container_start_page 580
container_title IEEE transactions on automatic control
container_volume 68
creator McInerney, Ian
Kerrigan, Eric C.
Constantinides, George A.
description First-order optimizationsolvers, such as the fast gradient method (FGM), are increasingly being used to solve model predictive control problems in resource-constrained environments. Unfortunately, the convergence rate of these solvers is significantly affected by the conditioning of the problem data, with ill-conditioned problems requiring a large number of iterations. To reduce the number of iterations required, we present a simple method for computing a horizon-independent preconditioning matrix for the Hessian of the condensed problem. The preconditioner is based on the block Toeplitz structure of the Hessian. Horizon independence allows one to use only the predicted system and cost matrices to compute the preconditioner, instead of the full Hessian. The proposed preconditioner has equivalent performance to an optimal preconditioner in numerical examples, producing speedups between 2x and 9x for the FGM. Additionally, we derive horizon-independent spectral bounds for the Hessian in terms of the transfer function of the predicted system, and show how these can be used to compute a novel horizon-independent bound on the condition number for the preconditioned Hessian.
doi_str_mv 10.1109/TAC.2022.3145657
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9691890</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9691890</ieee_id><sourcerecordid>2758723304</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-4ebda8e145f0a21e2bc9ea12b159b5f9ed90a8745563d4217105b7640db8d75b3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wcuC56353CTHsmotFPRQzyG7mZWUmtRkK-ivN6XFywwDzzszPAjdEjwjBOuH9bydUUzpjBEuGiHP0IQIoWoqKDtHE4yJqjVVzSW6ynlTxoZzMkGLl5j8bwz1MjjYQSlhrN4S9DE4P_oYIFWPkP1HqIaYqpUPYNMBcL4f_TdUbQxjittrdDHYbYabU5-i9-endftSr14Xy3a-qnvK-Vhz6JxVUF4csKUEaNdrsIR2ROhODBqcxlZJLkTDHKdEEiw62XDsOuWk6NgU3R_37lL82kMezSbuUygnDZVCScoY5oXCR6pPMecEg9kl_2nTjyHYHHSZosscdJmTrhK5O0Y8APzjutFEacz-AFYiZb8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2758723304</pqid></control><display><type>article</type><title>Horizon-Independent Preconditioner Design for Linear Predictive Control</title><source>IEEE/IET Electronic Library (IEL)</source><creator>McInerney, Ian ; Kerrigan, Eric C. ; Constantinides, George A.</creator><creatorcontrib>McInerney, Ian ; Kerrigan, Eric C. ; Constantinides, George A.</creatorcontrib><description>First-order optimizationsolvers, such as the fast gradient method (FGM), are increasingly being used to solve model predictive control problems in resource-constrained environments. Unfortunately, the convergence rate of these solvers is significantly affected by the conditioning of the problem data, with ill-conditioned problems requiring a large number of iterations. To reduce the number of iterations required, we present a simple method for computing a horizon-independent preconditioning matrix for the Hessian of the condensed problem. The preconditioner is based on the block Toeplitz structure of the Hessian. Horizon independence allows one to use only the predicted system and cost matrices to compute the preconditioner, instead of the full Hessian. The proposed preconditioner has equivalent performance to an optimal preconditioner in numerical examples, producing speedups between 2x and 9x for the FGM. Additionally, we derive horizon-independent spectral bounds for the Hessian in terms of the transfer function of the predicted system, and show how these can be used to compute a novel horizon-independent bound on the condition number for the preconditioned Hessian.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2022.3145657</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Design optimization ; Eigenvalues and eigenfunctions ; Fast gradient method (FGM) ; Gradient methods ; Horizon ; Ill-conditioned problems (mathematics) ; Linear matrix inequalities ; model predictive control (MPC) ; Optimal control ; Optimization ; Preconditioning ; Predictive control ; Transfer functions</subject><ispartof>IEEE transactions on automatic control, 2023-01, Vol.68 (1), p.580-587</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-4ebda8e145f0a21e2bc9ea12b159b5f9ed90a8745563d4217105b7640db8d75b3</cites><orcidid>0000-0002-3967-1544 ; 0000-0002-0201-310X ; 0000-0003-2616-9771</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9691890$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9691890$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>McInerney, Ian</creatorcontrib><creatorcontrib>Kerrigan, Eric C.</creatorcontrib><creatorcontrib>Constantinides, George A.</creatorcontrib><title>Horizon-Independent Preconditioner Design for Linear Predictive Control</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>First-order optimizationsolvers, such as the fast gradient method (FGM), are increasingly being used to solve model predictive control problems in resource-constrained environments. Unfortunately, the convergence rate of these solvers is significantly affected by the conditioning of the problem data, with ill-conditioned problems requiring a large number of iterations. To reduce the number of iterations required, we present a simple method for computing a horizon-independent preconditioning matrix for the Hessian of the condensed problem. The preconditioner is based on the block Toeplitz structure of the Hessian. Horizon independence allows one to use only the predicted system and cost matrices to compute the preconditioner, instead of the full Hessian. The proposed preconditioner has equivalent performance to an optimal preconditioner in numerical examples, producing speedups between 2x and 9x for the FGM. Additionally, we derive horizon-independent spectral bounds for the Hessian in terms of the transfer function of the predicted system, and show how these can be used to compute a novel horizon-independent bound on the condition number for the preconditioned Hessian.</description><subject>Design optimization</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Fast gradient method (FGM)</subject><subject>Gradient methods</subject><subject>Horizon</subject><subject>Ill-conditioned problems (mathematics)</subject><subject>Linear matrix inequalities</subject><subject>model predictive control (MPC)</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Preconditioning</subject><subject>Predictive control</subject><subject>Transfer functions</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wcuC56353CTHsmotFPRQzyG7mZWUmtRkK-ivN6XFywwDzzszPAjdEjwjBOuH9bydUUzpjBEuGiHP0IQIoWoqKDtHE4yJqjVVzSW6ynlTxoZzMkGLl5j8bwz1MjjYQSlhrN4S9DE4P_oYIFWPkP1HqIaYqpUPYNMBcL4f_TdUbQxjittrdDHYbYabU5-i9-endftSr14Xy3a-qnvK-Vhz6JxVUF4csKUEaNdrsIR2ROhODBqcxlZJLkTDHKdEEiw62XDsOuWk6NgU3R_37lL82kMezSbuUygnDZVCScoY5oXCR6pPMecEg9kl_2nTjyHYHHSZosscdJmTrhK5O0Y8APzjutFEacz-AFYiZb8</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>McInerney, Ian</creator><creator>Kerrigan, Eric C.</creator><creator>Constantinides, George A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3967-1544</orcidid><orcidid>https://orcid.org/0000-0002-0201-310X</orcidid><orcidid>https://orcid.org/0000-0003-2616-9771</orcidid></search><sort><creationdate>202301</creationdate><title>Horizon-Independent Preconditioner Design for Linear Predictive Control</title><author>McInerney, Ian ; Kerrigan, Eric C. ; Constantinides, George A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-4ebda8e145f0a21e2bc9ea12b159b5f9ed90a8745563d4217105b7640db8d75b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Design optimization</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Fast gradient method (FGM)</topic><topic>Gradient methods</topic><topic>Horizon</topic><topic>Ill-conditioned problems (mathematics)</topic><topic>Linear matrix inequalities</topic><topic>model predictive control (MPC)</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Preconditioning</topic><topic>Predictive control</topic><topic>Transfer functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McInerney, Ian</creatorcontrib><creatorcontrib>Kerrigan, Eric C.</creatorcontrib><creatorcontrib>Constantinides, George A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>McInerney, Ian</au><au>Kerrigan, Eric C.</au><au>Constantinides, George A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Horizon-Independent Preconditioner Design for Linear Predictive Control</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2023-01</date><risdate>2023</risdate><volume>68</volume><issue>1</issue><spage>580</spage><epage>587</epage><pages>580-587</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>First-order optimizationsolvers, such as the fast gradient method (FGM), are increasingly being used to solve model predictive control problems in resource-constrained environments. Unfortunately, the convergence rate of these solvers is significantly affected by the conditioning of the problem data, with ill-conditioned problems requiring a large number of iterations. To reduce the number of iterations required, we present a simple method for computing a horizon-independent preconditioning matrix for the Hessian of the condensed problem. The preconditioner is based on the block Toeplitz structure of the Hessian. Horizon independence allows one to use only the predicted system and cost matrices to compute the preconditioner, instead of the full Hessian. The proposed preconditioner has equivalent performance to an optimal preconditioner in numerical examples, producing speedups between 2x and 9x for the FGM. Additionally, we derive horizon-independent spectral bounds for the Hessian in terms of the transfer function of the predicted system, and show how these can be used to compute a novel horizon-independent bound on the condition number for the preconditioned Hessian.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2022.3145657</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3967-1544</orcidid><orcidid>https://orcid.org/0000-0002-0201-310X</orcidid><orcidid>https://orcid.org/0000-0003-2616-9771</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2023-01, Vol.68 (1), p.580-587
issn 0018-9286
1558-2523
language eng
recordid cdi_ieee_primary_9691890
source IEEE/IET Electronic Library (IEL)
subjects Design optimization
Eigenvalues and eigenfunctions
Fast gradient method (FGM)
Gradient methods
Horizon
Ill-conditioned problems (mathematics)
Linear matrix inequalities
model predictive control (MPC)
Optimal control
Optimization
Preconditioning
Predictive control
Transfer functions
title Horizon-Independent Preconditioner Design for Linear Predictive Control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T13%3A59%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Horizon-Independent%20Preconditioner%20Design%20for%20Linear%20Predictive%20Control&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=McInerney,%20Ian&rft.date=2023-01&rft.volume=68&rft.issue=1&rft.spage=580&rft.epage=587&rft.pages=580-587&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2022.3145657&rft_dat=%3Cproquest_RIE%3E2758723304%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2758723304&rft_id=info:pmid/&rft_ieee_id=9691890&rfr_iscdi=true