Smooth Parameterization of Rigid-Body Inertia

In this letter, we propose a parameterization of the rigid-body inertia tensor that is singularity free, guarantees full physical consistency, and has a straightforward physical interpretation. Based on a version of log-Cholesky decomposition of the pseudo-inertia matrix, we construct a smooth isomo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics and automation letters 2022-04, Vol.7 (2), p.2771-2778
Hauptverfasser: Rucker, Caleb, Wensing, Patrick M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2778
container_issue 2
container_start_page 2771
container_title IEEE robotics and automation letters
container_volume 7
creator Rucker, Caleb
Wensing, Patrick M.
description In this letter, we propose a parameterization of the rigid-body inertia tensor that is singularity free, guarantees full physical consistency, and has a straightforward physical interpretation. Based on a version of log-Cholesky decomposition of the pseudo-inertia matrix, we construct a smooth isomorphic mapping from \mathbb {R}^{10} to the set of fully physically consistent inertia tensors. This facilitates inertial estimation via unconstrained optimization on a vector space and avoids the non-uniqueness and singularities which we show are inherent to parameterizations of the inertia tensor based on eigenvalue decomposition and principal moments. The elements of our parameterization have straightforward physical meanings in terms of geometric transformations applied to a reference body. While adopting this new parameterization breaks the linear least squares structure of the system identification, theoretical results guarantee that all local optima of the resulting problems remain global optima. We compare the performance of three different parameterizations of inertia by performing inertial estimation on test data from a set of 1000 simulations of randomly sampled rigid bodies subject to an external time-varying wrench and measurement noise. We also investigate the performance of the log-Cholesky parameterization on a dataset from MIT Cheetah 3 to empirically demonstrate the theoretical results. Overall, the results indicate that the log-Cholesky parameterization achieves fast convergence while providing a simple and intuitive parametric description of inertia.
doi_str_mv 10.1109/LRA.2022.3144517
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9690029</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9690029</ieee_id><sourcerecordid>2624756375</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-a697f62175b2ef1cbd951ddf5079514894e191879b15aab748ff2051a900ceb33</originalsourceid><addsrcrecordid>eNpNkM9LwzAYhoMoOObugpeC5858-dkc59A5KChTzyFtE82wzUy7w_zrzegQT997eN7vhQeha8BzAKzuys1iTjAhcwqMcZBnaEKolDmVQpz_y5do1vdbjDFwIqniE5S_tiEMn9mLiaa1g43-xww-dFlw2cZ_-Ca_D80hW3c2Dt5coQtnvno7O90pen98eFs-5eXzar1clHlNKR1yI5R0goDkFbEO6qpRHJrGcSxTYIViFhQUUlXAjakkK5wjmINRGNe2onSKbse_uxi-97Yf9DbsY5cmNRGESS6o5InCI1XH0PfROr2LvjXxoAHroxedvOijF33ykio3Y8Vba_9wJdIwUfQXpD9b_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2624756375</pqid></control><display><type>article</type><title>Smooth Parameterization of Rigid-Body Inertia</title><source>IEEE Electronic Library (IEL)</source><creator>Rucker, Caleb ; Wensing, Patrick M.</creator><creatorcontrib>Rucker, Caleb ; Wensing, Patrick M.</creatorcontrib><description>In this letter, we propose a parameterization of the rigid-body inertia tensor that is singularity free, guarantees full physical consistency, and has a straightforward physical interpretation. Based on a version of log-Cholesky decomposition of the pseudo-inertia matrix, we construct a smooth isomorphic mapping from &lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;\mathbb {R}^{10}&lt;/tex-math&gt;&lt;/inline-formula&gt; to the set of fully physically consistent inertia tensors. This facilitates inertial estimation via unconstrained optimization on a vector space and avoids the non-uniqueness and singularities which we show are inherent to parameterizations of the inertia tensor based on eigenvalue decomposition and principal moments. The elements of our parameterization have straightforward physical meanings in terms of geometric transformations applied to a reference body. While adopting this new parameterization breaks the linear least squares structure of the system identification, theoretical results guarantee that all local optima of the resulting problems remain global optima. We compare the performance of three different parameterizations of inertia by performing inertial estimation on test data from a set of 1000 simulations of randomly sampled rigid bodies subject to an external time-varying wrench and measurement noise. We also investigate the performance of the log-Cholesky parameterization on a dataset from MIT Cheetah 3 to empirically demonstrate the theoretical results. Overall, the results indicate that the log-Cholesky parameterization achieves fast convergence while providing a simple and intuitive parametric description of inertia.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2022.3144517</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Decomposition ; Dynamics ; Eigenvalues ; Estimation ; Geometric transformation ; Inertia ; inertial estimation ; Jacobian matrices ; Linear matrix inequalities ; Mathematical analysis ; Matrix decomposition ; Noise measurement ; Optimization ; Parameterization ; Rigid structures ; Robot kinematics ; Singularities ; System identification ; Tensors</subject><ispartof>IEEE robotics and automation letters, 2022-04, Vol.7 (2), p.2771-2778</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-a697f62175b2ef1cbd951ddf5079514894e191879b15aab748ff2051a900ceb33</citedby><cites>FETCH-LOGICAL-c333t-a697f62175b2ef1cbd951ddf5079514894e191879b15aab748ff2051a900ceb33</cites><orcidid>0000-0002-9041-5175 ; 0000-0001-7181-1933</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9690029$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9690029$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rucker, Caleb</creatorcontrib><creatorcontrib>Wensing, Patrick M.</creatorcontrib><title>Smooth Parameterization of Rigid-Body Inertia</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>In this letter, we propose a parameterization of the rigid-body inertia tensor that is singularity free, guarantees full physical consistency, and has a straightforward physical interpretation. Based on a version of log-Cholesky decomposition of the pseudo-inertia matrix, we construct a smooth isomorphic mapping from &lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;\mathbb {R}^{10}&lt;/tex-math&gt;&lt;/inline-formula&gt; to the set of fully physically consistent inertia tensors. This facilitates inertial estimation via unconstrained optimization on a vector space and avoids the non-uniqueness and singularities which we show are inherent to parameterizations of the inertia tensor based on eigenvalue decomposition and principal moments. The elements of our parameterization have straightforward physical meanings in terms of geometric transformations applied to a reference body. While adopting this new parameterization breaks the linear least squares structure of the system identification, theoretical results guarantee that all local optima of the resulting problems remain global optima. We compare the performance of three different parameterizations of inertia by performing inertial estimation on test data from a set of 1000 simulations of randomly sampled rigid bodies subject to an external time-varying wrench and measurement noise. We also investigate the performance of the log-Cholesky parameterization on a dataset from MIT Cheetah 3 to empirically demonstrate the theoretical results. Overall, the results indicate that the log-Cholesky parameterization achieves fast convergence while providing a simple and intuitive parametric description of inertia.</description><subject>Decomposition</subject><subject>Dynamics</subject><subject>Eigenvalues</subject><subject>Estimation</subject><subject>Geometric transformation</subject><subject>Inertia</subject><subject>inertial estimation</subject><subject>Jacobian matrices</subject><subject>Linear matrix inequalities</subject><subject>Mathematical analysis</subject><subject>Matrix decomposition</subject><subject>Noise measurement</subject><subject>Optimization</subject><subject>Parameterization</subject><subject>Rigid structures</subject><subject>Robot kinematics</subject><subject>Singularities</subject><subject>System identification</subject><subject>Tensors</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM9LwzAYhoMoOObugpeC5858-dkc59A5KChTzyFtE82wzUy7w_zrzegQT997eN7vhQeha8BzAKzuys1iTjAhcwqMcZBnaEKolDmVQpz_y5do1vdbjDFwIqniE5S_tiEMn9mLiaa1g43-xww-dFlw2cZ_-Ca_D80hW3c2Dt5coQtnvno7O90pen98eFs-5eXzar1clHlNKR1yI5R0goDkFbEO6qpRHJrGcSxTYIViFhQUUlXAjakkK5wjmINRGNe2onSKbse_uxi-97Yf9DbsY5cmNRGESS6o5InCI1XH0PfROr2LvjXxoAHroxedvOijF33ykio3Y8Vba_9wJdIwUfQXpD9b_A</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Rucker, Caleb</creator><creator>Wensing, Patrick M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9041-5175</orcidid><orcidid>https://orcid.org/0000-0001-7181-1933</orcidid></search><sort><creationdate>20220401</creationdate><title>Smooth Parameterization of Rigid-Body Inertia</title><author>Rucker, Caleb ; Wensing, Patrick M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-a697f62175b2ef1cbd951ddf5079514894e191879b15aab748ff2051a900ceb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Decomposition</topic><topic>Dynamics</topic><topic>Eigenvalues</topic><topic>Estimation</topic><topic>Geometric transformation</topic><topic>Inertia</topic><topic>inertial estimation</topic><topic>Jacobian matrices</topic><topic>Linear matrix inequalities</topic><topic>Mathematical analysis</topic><topic>Matrix decomposition</topic><topic>Noise measurement</topic><topic>Optimization</topic><topic>Parameterization</topic><topic>Rigid structures</topic><topic>Robot kinematics</topic><topic>Singularities</topic><topic>System identification</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rucker, Caleb</creatorcontrib><creatorcontrib>Wensing, Patrick M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rucker, Caleb</au><au>Wensing, Patrick M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Smooth Parameterization of Rigid-Body Inertia</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>7</volume><issue>2</issue><spage>2771</spage><epage>2778</epage><pages>2771-2778</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>In this letter, we propose a parameterization of the rigid-body inertia tensor that is singularity free, guarantees full physical consistency, and has a straightforward physical interpretation. Based on a version of log-Cholesky decomposition of the pseudo-inertia matrix, we construct a smooth isomorphic mapping from &lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;\mathbb {R}^{10}&lt;/tex-math&gt;&lt;/inline-formula&gt; to the set of fully physically consistent inertia tensors. This facilitates inertial estimation via unconstrained optimization on a vector space and avoids the non-uniqueness and singularities which we show are inherent to parameterizations of the inertia tensor based on eigenvalue decomposition and principal moments. The elements of our parameterization have straightforward physical meanings in terms of geometric transformations applied to a reference body. While adopting this new parameterization breaks the linear least squares structure of the system identification, theoretical results guarantee that all local optima of the resulting problems remain global optima. We compare the performance of three different parameterizations of inertia by performing inertial estimation on test data from a set of 1000 simulations of randomly sampled rigid bodies subject to an external time-varying wrench and measurement noise. We also investigate the performance of the log-Cholesky parameterization on a dataset from MIT Cheetah 3 to empirically demonstrate the theoretical results. Overall, the results indicate that the log-Cholesky parameterization achieves fast convergence while providing a simple and intuitive parametric description of inertia.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2022.3144517</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9041-5175</orcidid><orcidid>https://orcid.org/0000-0001-7181-1933</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2377-3766
ispartof IEEE robotics and automation letters, 2022-04, Vol.7 (2), p.2771-2778
issn 2377-3766
2377-3766
language eng
recordid cdi_ieee_primary_9690029
source IEEE Electronic Library (IEL)
subjects Decomposition
Dynamics
Eigenvalues
Estimation
Geometric transformation
Inertia
inertial estimation
Jacobian matrices
Linear matrix inequalities
Mathematical analysis
Matrix decomposition
Noise measurement
Optimization
Parameterization
Rigid structures
Robot kinematics
Singularities
System identification
Tensors
title Smooth Parameterization of Rigid-Body Inertia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A55%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Smooth%20Parameterization%20of%20Rigid-Body%20Inertia&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Rucker,%20Caleb&rft.date=2022-04-01&rft.volume=7&rft.issue=2&rft.spage=2771&rft.epage=2778&rft.pages=2771-2778&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2022.3144517&rft_dat=%3Cproquest_RIE%3E2624756375%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2624756375&rft_id=info:pmid/&rft_ieee_id=9690029&rfr_iscdi=true