Design and Implementation of Hybrid Adaptive Extended Kalman Filter for State Estimation of Induction Motor

Today, induction motor (IM) is still the most popular electrical machine due to its robust and rare element-free structure, lower maintenance requirement, and cost-effective production. State estimation for this motor is the cornerstone for speed-sensorless control, fault-tolerant control, and fault...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement 2022, Vol.71, p.1-12
Hauptverfasser: Ozkurt, Gizem, Zerdali, Emrah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue
container_start_page 1
container_title IEEE transactions on instrumentation and measurement
container_volume 71
creator Ozkurt, Gizem
Zerdali, Emrah
description Today, induction motor (IM) is still the most popular electrical machine due to its robust and rare element-free structure, lower maintenance requirement, and cost-effective production. State estimation for this motor is the cornerstone for speed-sensorless control, fault-tolerant control, and fault diagnostics. Nonlinear Kalman filters, especially extended Kalman filters (EKFs), are the most preferred state and/or parameter estimation methods for IM. However, they require a stochastic system with complete process and measurement noise covariances for optimal estimations. These noise covariances, unknown or partially known in practice, vary under different operating conditions of the IM. To deal with this problem, various adaptive EKFs (AEKFs) have been proposed, which can compensate for the effect of varying noise covariances, but each approach has its own pitfalls. This article discusses the hybrid AEKF (HAEKF), which eliminates the problems of existing AEKFs. To demonstrate its effectiveness, the proposed HAEKF is compared qualitatively and quantitatively with existing AEKFs through simulation and experimental studies. Finally, improved estimation stability and performance are provided with the proposed HAEKF observer.
doi_str_mv 10.1109/TIM.2022.3144729
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9686740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9686740</ieee_id><sourcerecordid>2633046757</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-2197d6dac25a4ea9467c3b9a4f65dc3f5054d9f060104c07dee93cea6e69f2a13</originalsourceid><addsrcrecordid>eNo9kE1PwkAQhjdGExG9m3jZxHNx9qO77JEgSCPEg3hulu7UFPvldjHy7y1COE0meZ53Ji8h9wxGjIF5WierEQfOR4JJqbm5IAMWxzoySvFLMgBg48jIWF2Tm67bAoBWUg_I1zN2xWdNbe1oUrUlVlgHG4qmpk1OF_uNLxydONuG4gfp7Ddg7dDRV1tWtqbzogzoad54-t5bPdCFojrrSe122f-yakLjb8lVbssO705zSD7ms_V0ES3fXpLpZBllQoxDxJnRTjmb8dhKtEYqnYmNsTJXsctEHkMsnclBAQOZgXaIRmRoFSqTc8vEkDwec1vffO-wC-m22fm6P5lyJQT0gbHuKThSmW-6zmOetr7_3e9TBumh0rSvND1Ump4q7ZWHo1Ig4hk3aqy0BPEHz_1y6w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2633046757</pqid></control><display><type>article</type><title>Design and Implementation of Hybrid Adaptive Extended Kalman Filter for State Estimation of Induction Motor</title><source>IEEE Electronic Library (IEL)</source><creator>Ozkurt, Gizem ; Zerdali, Emrah</creator><creatorcontrib>Ozkurt, Gizem ; Zerdali, Emrah</creatorcontrib><description>Today, induction motor (IM) is still the most popular electrical machine due to its robust and rare element-free structure, lower maintenance requirement, and cost-effective production. State estimation for this motor is the cornerstone for speed-sensorless control, fault-tolerant control, and fault diagnostics. Nonlinear Kalman filters, especially extended Kalman filters (EKFs), are the most preferred state and/or parameter estimation methods for IM. However, they require a stochastic system with complete process and measurement noise covariances for optimal estimations. These noise covariances, unknown or partially known in practice, vary under different operating conditions of the IM. To deal with this problem, various adaptive EKFs (AEKFs) have been proposed, which can compensate for the effect of varying noise covariances, but each approach has its own pitfalls. This article discusses the hybrid AEKF (HAEKF), which eliminates the problems of existing AEKFs. To demonstrate its effectiveness, the proposed HAEKF is compared qualitatively and quantitatively with existing AEKFs through simulation and experimental studies. Finally, improved estimation stability and performance are provided with the proposed HAEKF observer.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2022.3144729</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation models ; Adaptive extended Kalman filter (AEKF) ; Covariance matrices ; Estimation ; Extended Kalman filter ; Fault diagnosis ; Fault tolerance ; induction motor (IM) ; Induction motors ; Kalman filters ; Mathematical models ; Noise ; Noise measurement ; Observers ; Parameter estimation ; Rotors ; speed-sensorless control ; State estimation ; Stochastic systems</subject><ispartof>IEEE transactions on instrumentation and measurement, 2022, Vol.71, p.1-12</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-2197d6dac25a4ea9467c3b9a4f65dc3f5054d9f060104c07dee93cea6e69f2a13</citedby><cites>FETCH-LOGICAL-c338t-2197d6dac25a4ea9467c3b9a4f65dc3f5054d9f060104c07dee93cea6e69f2a13</cites><orcidid>0000-0003-1755-0327 ; 0000-0001-8053-3955</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9686740$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9686740$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ozkurt, Gizem</creatorcontrib><creatorcontrib>Zerdali, Emrah</creatorcontrib><title>Design and Implementation of Hybrid Adaptive Extended Kalman Filter for State Estimation of Induction Motor</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>Today, induction motor (IM) is still the most popular electrical machine due to its robust and rare element-free structure, lower maintenance requirement, and cost-effective production. State estimation for this motor is the cornerstone for speed-sensorless control, fault-tolerant control, and fault diagnostics. Nonlinear Kalman filters, especially extended Kalman filters (EKFs), are the most preferred state and/or parameter estimation methods for IM. However, they require a stochastic system with complete process and measurement noise covariances for optimal estimations. These noise covariances, unknown or partially known in practice, vary under different operating conditions of the IM. To deal with this problem, various adaptive EKFs (AEKFs) have been proposed, which can compensate for the effect of varying noise covariances, but each approach has its own pitfalls. This article discusses the hybrid AEKF (HAEKF), which eliminates the problems of existing AEKFs. To demonstrate its effectiveness, the proposed HAEKF is compared qualitatively and quantitatively with existing AEKFs through simulation and experimental studies. Finally, improved estimation stability and performance are provided with the proposed HAEKF observer.</description><subject>Adaptation models</subject><subject>Adaptive extended Kalman filter (AEKF)</subject><subject>Covariance matrices</subject><subject>Estimation</subject><subject>Extended Kalman filter</subject><subject>Fault diagnosis</subject><subject>Fault tolerance</subject><subject>induction motor (IM)</subject><subject>Induction motors</subject><subject>Kalman filters</subject><subject>Mathematical models</subject><subject>Noise</subject><subject>Noise measurement</subject><subject>Observers</subject><subject>Parameter estimation</subject><subject>Rotors</subject><subject>speed-sensorless control</subject><subject>State estimation</subject><subject>Stochastic systems</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PwkAQhjdGExG9m3jZxHNx9qO77JEgSCPEg3hulu7UFPvldjHy7y1COE0meZ53Ji8h9wxGjIF5WierEQfOR4JJqbm5IAMWxzoySvFLMgBg48jIWF2Tm67bAoBWUg_I1zN2xWdNbe1oUrUlVlgHG4qmpk1OF_uNLxydONuG4gfp7Ddg7dDRV1tWtqbzogzoad54-t5bPdCFojrrSe122f-yakLjb8lVbssO705zSD7ms_V0ES3fXpLpZBllQoxDxJnRTjmb8dhKtEYqnYmNsTJXsctEHkMsnclBAQOZgXaIRmRoFSqTc8vEkDwec1vffO-wC-m22fm6P5lyJQT0gbHuKThSmW-6zmOetr7_3e9TBumh0rSvND1Ump4q7ZWHo1Ig4hk3aqy0BPEHz_1y6w</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Ozkurt, Gizem</creator><creator>Zerdali, Emrah</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1755-0327</orcidid><orcidid>https://orcid.org/0000-0001-8053-3955</orcidid></search><sort><creationdate>2022</creationdate><title>Design and Implementation of Hybrid Adaptive Extended Kalman Filter for State Estimation of Induction Motor</title><author>Ozkurt, Gizem ; Zerdali, Emrah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-2197d6dac25a4ea9467c3b9a4f65dc3f5054d9f060104c07dee93cea6e69f2a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptation models</topic><topic>Adaptive extended Kalman filter (AEKF)</topic><topic>Covariance matrices</topic><topic>Estimation</topic><topic>Extended Kalman filter</topic><topic>Fault diagnosis</topic><topic>Fault tolerance</topic><topic>induction motor (IM)</topic><topic>Induction motors</topic><topic>Kalman filters</topic><topic>Mathematical models</topic><topic>Noise</topic><topic>Noise measurement</topic><topic>Observers</topic><topic>Parameter estimation</topic><topic>Rotors</topic><topic>speed-sensorless control</topic><topic>State estimation</topic><topic>Stochastic systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ozkurt, Gizem</creatorcontrib><creatorcontrib>Zerdali, Emrah</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ozkurt, Gizem</au><au>Zerdali, Emrah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and Implementation of Hybrid Adaptive Extended Kalman Filter for State Estimation of Induction Motor</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2022</date><risdate>2022</risdate><volume>71</volume><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>Today, induction motor (IM) is still the most popular electrical machine due to its robust and rare element-free structure, lower maintenance requirement, and cost-effective production. State estimation for this motor is the cornerstone for speed-sensorless control, fault-tolerant control, and fault diagnostics. Nonlinear Kalman filters, especially extended Kalman filters (EKFs), are the most preferred state and/or parameter estimation methods for IM. However, they require a stochastic system with complete process and measurement noise covariances for optimal estimations. These noise covariances, unknown or partially known in practice, vary under different operating conditions of the IM. To deal with this problem, various adaptive EKFs (AEKFs) have been proposed, which can compensate for the effect of varying noise covariances, but each approach has its own pitfalls. This article discusses the hybrid AEKF (HAEKF), which eliminates the problems of existing AEKFs. To demonstrate its effectiveness, the proposed HAEKF is compared qualitatively and quantitatively with existing AEKFs through simulation and experimental studies. Finally, improved estimation stability and performance are provided with the proposed HAEKF observer.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2022.3144729</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1755-0327</orcidid><orcidid>https://orcid.org/0000-0001-8053-3955</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9456
ispartof IEEE transactions on instrumentation and measurement, 2022, Vol.71, p.1-12
issn 0018-9456
1557-9662
language eng
recordid cdi_ieee_primary_9686740
source IEEE Electronic Library (IEL)
subjects Adaptation models
Adaptive extended Kalman filter (AEKF)
Covariance matrices
Estimation
Extended Kalman filter
Fault diagnosis
Fault tolerance
induction motor (IM)
Induction motors
Kalman filters
Mathematical models
Noise
Noise measurement
Observers
Parameter estimation
Rotors
speed-sensorless control
State estimation
Stochastic systems
title Design and Implementation of Hybrid Adaptive Extended Kalman Filter for State Estimation of Induction Motor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A04%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20Implementation%20of%20Hybrid%20Adaptive%20Extended%20Kalman%20Filter%20for%20State%20Estimation%20of%20Induction%20Motor&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Ozkurt,%20Gizem&rft.date=2022&rft.volume=71&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2022.3144729&rft_dat=%3Cproquest_RIE%3E2633046757%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2633046757&rft_id=info:pmid/&rft_ieee_id=9686740&rfr_iscdi=true