Design and Implementation of Hybrid Adaptive Extended Kalman Filter for State Estimation of Induction Motor
Today, induction motor (IM) is still the most popular electrical machine due to its robust and rare element-free structure, lower maintenance requirement, and cost-effective production. State estimation for this motor is the cornerstone for speed-sensorless control, fault-tolerant control, and fault...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on instrumentation and measurement 2022, Vol.71, p.1-12 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on instrumentation and measurement |
container_volume | 71 |
creator | Ozkurt, Gizem Zerdali, Emrah |
description | Today, induction motor (IM) is still the most popular electrical machine due to its robust and rare element-free structure, lower maintenance requirement, and cost-effective production. State estimation for this motor is the cornerstone for speed-sensorless control, fault-tolerant control, and fault diagnostics. Nonlinear Kalman filters, especially extended Kalman filters (EKFs), are the most preferred state and/or parameter estimation methods for IM. However, they require a stochastic system with complete process and measurement noise covariances for optimal estimations. These noise covariances, unknown or partially known in practice, vary under different operating conditions of the IM. To deal with this problem, various adaptive EKFs (AEKFs) have been proposed, which can compensate for the effect of varying noise covariances, but each approach has its own pitfalls. This article discusses the hybrid AEKF (HAEKF), which eliminates the problems of existing AEKFs. To demonstrate its effectiveness, the proposed HAEKF is compared qualitatively and quantitatively with existing AEKFs through simulation and experimental studies. Finally, improved estimation stability and performance are provided with the proposed HAEKF observer. |
doi_str_mv | 10.1109/TIM.2022.3144729 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9686740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9686740</ieee_id><sourcerecordid>2633046757</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-2197d6dac25a4ea9467c3b9a4f65dc3f5054d9f060104c07dee93cea6e69f2a13</originalsourceid><addsrcrecordid>eNo9kE1PwkAQhjdGExG9m3jZxHNx9qO77JEgSCPEg3hulu7UFPvldjHy7y1COE0meZ53Ji8h9wxGjIF5WierEQfOR4JJqbm5IAMWxzoySvFLMgBg48jIWF2Tm67bAoBWUg_I1zN2xWdNbe1oUrUlVlgHG4qmpk1OF_uNLxydONuG4gfp7Ddg7dDRV1tWtqbzogzoad54-t5bPdCFojrrSe122f-yakLjb8lVbssO705zSD7ms_V0ES3fXpLpZBllQoxDxJnRTjmb8dhKtEYqnYmNsTJXsctEHkMsnclBAQOZgXaIRmRoFSqTc8vEkDwec1vffO-wC-m22fm6P5lyJQT0gbHuKThSmW-6zmOetr7_3e9TBumh0rSvND1Ump4q7ZWHo1Ig4hk3aqy0BPEHz_1y6w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2633046757</pqid></control><display><type>article</type><title>Design and Implementation of Hybrid Adaptive Extended Kalman Filter for State Estimation of Induction Motor</title><source>IEEE Electronic Library (IEL)</source><creator>Ozkurt, Gizem ; Zerdali, Emrah</creator><creatorcontrib>Ozkurt, Gizem ; Zerdali, Emrah</creatorcontrib><description>Today, induction motor (IM) is still the most popular electrical machine due to its robust and rare element-free structure, lower maintenance requirement, and cost-effective production. State estimation for this motor is the cornerstone for speed-sensorless control, fault-tolerant control, and fault diagnostics. Nonlinear Kalman filters, especially extended Kalman filters (EKFs), are the most preferred state and/or parameter estimation methods for IM. However, they require a stochastic system with complete process and measurement noise covariances for optimal estimations. These noise covariances, unknown or partially known in practice, vary under different operating conditions of the IM. To deal with this problem, various adaptive EKFs (AEKFs) have been proposed, which can compensate for the effect of varying noise covariances, but each approach has its own pitfalls. This article discusses the hybrid AEKF (HAEKF), which eliminates the problems of existing AEKFs. To demonstrate its effectiveness, the proposed HAEKF is compared qualitatively and quantitatively with existing AEKFs through simulation and experimental studies. Finally, improved estimation stability and performance are provided with the proposed HAEKF observer.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2022.3144729</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation models ; Adaptive extended Kalman filter (AEKF) ; Covariance matrices ; Estimation ; Extended Kalman filter ; Fault diagnosis ; Fault tolerance ; induction motor (IM) ; Induction motors ; Kalman filters ; Mathematical models ; Noise ; Noise measurement ; Observers ; Parameter estimation ; Rotors ; speed-sensorless control ; State estimation ; Stochastic systems</subject><ispartof>IEEE transactions on instrumentation and measurement, 2022, Vol.71, p.1-12</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-2197d6dac25a4ea9467c3b9a4f65dc3f5054d9f060104c07dee93cea6e69f2a13</citedby><cites>FETCH-LOGICAL-c338t-2197d6dac25a4ea9467c3b9a4f65dc3f5054d9f060104c07dee93cea6e69f2a13</cites><orcidid>0000-0003-1755-0327 ; 0000-0001-8053-3955</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9686740$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9686740$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ozkurt, Gizem</creatorcontrib><creatorcontrib>Zerdali, Emrah</creatorcontrib><title>Design and Implementation of Hybrid Adaptive Extended Kalman Filter for State Estimation of Induction Motor</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>Today, induction motor (IM) is still the most popular electrical machine due to its robust and rare element-free structure, lower maintenance requirement, and cost-effective production. State estimation for this motor is the cornerstone for speed-sensorless control, fault-tolerant control, and fault diagnostics. Nonlinear Kalman filters, especially extended Kalman filters (EKFs), are the most preferred state and/or parameter estimation methods for IM. However, they require a stochastic system with complete process and measurement noise covariances for optimal estimations. These noise covariances, unknown or partially known in practice, vary under different operating conditions of the IM. To deal with this problem, various adaptive EKFs (AEKFs) have been proposed, which can compensate for the effect of varying noise covariances, but each approach has its own pitfalls. This article discusses the hybrid AEKF (HAEKF), which eliminates the problems of existing AEKFs. To demonstrate its effectiveness, the proposed HAEKF is compared qualitatively and quantitatively with existing AEKFs through simulation and experimental studies. Finally, improved estimation stability and performance are provided with the proposed HAEKF observer.</description><subject>Adaptation models</subject><subject>Adaptive extended Kalman filter (AEKF)</subject><subject>Covariance matrices</subject><subject>Estimation</subject><subject>Extended Kalman filter</subject><subject>Fault diagnosis</subject><subject>Fault tolerance</subject><subject>induction motor (IM)</subject><subject>Induction motors</subject><subject>Kalman filters</subject><subject>Mathematical models</subject><subject>Noise</subject><subject>Noise measurement</subject><subject>Observers</subject><subject>Parameter estimation</subject><subject>Rotors</subject><subject>speed-sensorless control</subject><subject>State estimation</subject><subject>Stochastic systems</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PwkAQhjdGExG9m3jZxHNx9qO77JEgSCPEg3hulu7UFPvldjHy7y1COE0meZ53Ji8h9wxGjIF5WierEQfOR4JJqbm5IAMWxzoySvFLMgBg48jIWF2Tm67bAoBWUg_I1zN2xWdNbe1oUrUlVlgHG4qmpk1OF_uNLxydONuG4gfp7Ddg7dDRV1tWtqbzogzoad54-t5bPdCFojrrSe122f-yakLjb8lVbssO705zSD7ms_V0ES3fXpLpZBllQoxDxJnRTjmb8dhKtEYqnYmNsTJXsctEHkMsnclBAQOZgXaIRmRoFSqTc8vEkDwec1vffO-wC-m22fm6P5lyJQT0gbHuKThSmW-6zmOetr7_3e9TBumh0rSvND1Ump4q7ZWHo1Ig4hk3aqy0BPEHz_1y6w</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Ozkurt, Gizem</creator><creator>Zerdali, Emrah</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1755-0327</orcidid><orcidid>https://orcid.org/0000-0001-8053-3955</orcidid></search><sort><creationdate>2022</creationdate><title>Design and Implementation of Hybrid Adaptive Extended Kalman Filter for State Estimation of Induction Motor</title><author>Ozkurt, Gizem ; Zerdali, Emrah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-2197d6dac25a4ea9467c3b9a4f65dc3f5054d9f060104c07dee93cea6e69f2a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptation models</topic><topic>Adaptive extended Kalman filter (AEKF)</topic><topic>Covariance matrices</topic><topic>Estimation</topic><topic>Extended Kalman filter</topic><topic>Fault diagnosis</topic><topic>Fault tolerance</topic><topic>induction motor (IM)</topic><topic>Induction motors</topic><topic>Kalman filters</topic><topic>Mathematical models</topic><topic>Noise</topic><topic>Noise measurement</topic><topic>Observers</topic><topic>Parameter estimation</topic><topic>Rotors</topic><topic>speed-sensorless control</topic><topic>State estimation</topic><topic>Stochastic systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ozkurt, Gizem</creatorcontrib><creatorcontrib>Zerdali, Emrah</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ozkurt, Gizem</au><au>Zerdali, Emrah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and Implementation of Hybrid Adaptive Extended Kalman Filter for State Estimation of Induction Motor</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2022</date><risdate>2022</risdate><volume>71</volume><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>Today, induction motor (IM) is still the most popular electrical machine due to its robust and rare element-free structure, lower maintenance requirement, and cost-effective production. State estimation for this motor is the cornerstone for speed-sensorless control, fault-tolerant control, and fault diagnostics. Nonlinear Kalman filters, especially extended Kalman filters (EKFs), are the most preferred state and/or parameter estimation methods for IM. However, they require a stochastic system with complete process and measurement noise covariances for optimal estimations. These noise covariances, unknown or partially known in practice, vary under different operating conditions of the IM. To deal with this problem, various adaptive EKFs (AEKFs) have been proposed, which can compensate for the effect of varying noise covariances, but each approach has its own pitfalls. This article discusses the hybrid AEKF (HAEKF), which eliminates the problems of existing AEKFs. To demonstrate its effectiveness, the proposed HAEKF is compared qualitatively and quantitatively with existing AEKFs through simulation and experimental studies. Finally, improved estimation stability and performance are provided with the proposed HAEKF observer.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2022.3144729</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1755-0327</orcidid><orcidid>https://orcid.org/0000-0001-8053-3955</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9456 |
ispartof | IEEE transactions on instrumentation and measurement, 2022, Vol.71, p.1-12 |
issn | 0018-9456 1557-9662 |
language | eng |
recordid | cdi_ieee_primary_9686740 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptation models Adaptive extended Kalman filter (AEKF) Covariance matrices Estimation Extended Kalman filter Fault diagnosis Fault tolerance induction motor (IM) Induction motors Kalman filters Mathematical models Noise Noise measurement Observers Parameter estimation Rotors speed-sensorless control State estimation Stochastic systems |
title | Design and Implementation of Hybrid Adaptive Extended Kalman Filter for State Estimation of Induction Motor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A04%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20Implementation%20of%20Hybrid%20Adaptive%20Extended%20Kalman%20Filter%20for%20State%20Estimation%20of%20Induction%20Motor&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Ozkurt,%20Gizem&rft.date=2022&rft.volume=71&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2022.3144729&rft_dat=%3Cproquest_RIE%3E2633046757%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2633046757&rft_id=info:pmid/&rft_ieee_id=9686740&rfr_iscdi=true |