Physics-Based Simulation and Machine Learning for the Practical Implementation of EIT-Based Tactile Sensors
This work reports an innovative framework toward the practical implementation of tactile sensors based on electrical impedance tomography. Particularly, we tested our framework on the development of a piezoresistive insole-shaped sensor prototype. Our approach couples the implementation of the forwa...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2022-03, Vol.22 (5), p.4186-4196 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4196 |
---|---|
container_issue | 5 |
container_start_page | 4186 |
container_title | IEEE sensors journal |
container_volume | 22 |
creator | Biasi, Niccolo Gargano, Andrea Arcarisi, Lucia Carbonaro, Nicola Tognetti, Alessandro |
description | This work reports an innovative framework toward the practical implementation of tactile sensors based on electrical impedance tomography. Particularly, we tested our framework on the development of a piezoresistive insole-shaped sensor prototype. Our approach couples the implementation of the forward model through a physics-based general purpose FEM software and an ANN model for the inverse problem solution. First, we developed a FEM forward model in COMSOL Multyphysics, and we optimized the parameters of the model to better resemble the prototype characteristics. Then, we trained an ANN model with an "artificial" dataset generated by feeding the forward model with a large set of different conductivity distribution samples and measuring the voltage at the boundary electrodes. For comparison, we employed the forward model also to compute the sensitivity matrix, which is required to apply standard linear reconstruction methods. We statistically compared the performance of the proposed machine learning approach with those of standard linear reconstruction methods. The results on simulated data highlight the higher accuracy of the ANN with respect to the other methods. In particular, the mean conductivity RMSE is 0.8 S/m. Finally, we tested our approach with the physical prototype to evaluate the performance in touch position detection. Again, the ANN achieves the minimum mean position error (5.74 mm), demonstrating the feasibility of using machine learning trained with artificial datasets for solving the inverse problem in EIT-based tactile sensors. |
doi_str_mv | 10.1109/JSEN.2022.3144038 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9684378</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9684378</ieee_id><sourcerecordid>2635044355</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-9272fa1b33116756f406e23126dacbd6997f942ce903ca70d892a5b31761496d3</originalsourceid><addsrcrecordid>eNo9kM9LwzAYhoMoOKd_gHgJeO7M7zRHlamTqYNN8BayNHWZbTqT7rD_3pYOT997eN73gweAa4wmGCN197qcvk8IImRCMWOI5idghDnPMyxZftpnijJG5dc5uEhpixBWkssR-FlsDsnblD2Y5Aq49PW-Mq1vAjShgG_GbnxwcO5MDD58w7KJsN04uIjGtt6aCs7qXeVqF9qh1ZRwOlsd11Y9VDm4dCE1MV2Cs9JUyV0d7xh8Pk1Xjy_Z_ON59ng_zyxDss0UkaQ0eE0pxkJyUTIkHKGYiMLYdSGUkqVixDqFqDUSFbkihq8plgIzJQo6BrfD7i42v3uXWr1t9jF0LzURlCPGKOcdhQfKxial6Eq9i7428aAx0r1T3TvVvVN9dNp1boaOd87980rkndmc_gG5EHHl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2635044355</pqid></control><display><type>article</type><title>Physics-Based Simulation and Machine Learning for the Practical Implementation of EIT-Based Tactile Sensors</title><source>IEEE Electronic Library (IEL)</source><creator>Biasi, Niccolo ; Gargano, Andrea ; Arcarisi, Lucia ; Carbonaro, Nicola ; Tognetti, Alessandro</creator><creatorcontrib>Biasi, Niccolo ; Gargano, Andrea ; Arcarisi, Lucia ; Carbonaro, Nicola ; Tognetti, Alessandro</creatorcontrib><description>This work reports an innovative framework toward the practical implementation of tactile sensors based on electrical impedance tomography. Particularly, we tested our framework on the development of a piezoresistive insole-shaped sensor prototype. Our approach couples the implementation of the forward model through a physics-based general purpose FEM software and an ANN model for the inverse problem solution. First, we developed a FEM forward model in COMSOL Multyphysics, and we optimized the parameters of the model to better resemble the prototype characteristics. Then, we trained an ANN model with an "artificial" dataset generated by feeding the forward model with a large set of different conductivity distribution samples and measuring the voltage at the boundary electrodes. For comparison, we employed the forward model also to compute the sensitivity matrix, which is required to apply standard linear reconstruction methods. We statistically compared the performance of the proposed machine learning approach with those of standard linear reconstruction methods. The results on simulated data highlight the higher accuracy of the ANN with respect to the other methods. In particular, the mean conductivity RMSE is 0.8 S/m. Finally, we tested our approach with the physical prototype to evaluate the performance in touch position detection. Again, the ANN achieves the minimum mean position error (5.74 mm), demonstrating the feasibility of using machine learning trained with artificial datasets for solving the inverse problem in EIT-based tactile sensors.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2022.3144038</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Conductivity ; Datasets ; Electrical impedance ; Electrical impedance tomography ; Electrodes ; finite element modeling ; Insoles ; Inverse problems ; Machine learning ; Mathematical models ; Performance evaluation ; Position errors ; Prototypes ; Reconstruction ; Sensors ; Shape ; Statistical methods ; tactile sensing ; Tactile sensors ; Tactile sensors (robotics)</subject><ispartof>IEEE sensors journal, 2022-03, Vol.22 (5), p.4186-4196</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-9272fa1b33116756f406e23126dacbd6997f942ce903ca70d892a5b31761496d3</citedby><cites>FETCH-LOGICAL-c407t-9272fa1b33116756f406e23126dacbd6997f942ce903ca70d892a5b31761496d3</cites><orcidid>0000-0001-8194-1010 ; 0000-0002-9997-2592 ; 0000-0001-6753-2333 ; 0000-0001-9848-4071</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9684378$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9684378$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Biasi, Niccolo</creatorcontrib><creatorcontrib>Gargano, Andrea</creatorcontrib><creatorcontrib>Arcarisi, Lucia</creatorcontrib><creatorcontrib>Carbonaro, Nicola</creatorcontrib><creatorcontrib>Tognetti, Alessandro</creatorcontrib><title>Physics-Based Simulation and Machine Learning for the Practical Implementation of EIT-Based Tactile Sensors</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>This work reports an innovative framework toward the practical implementation of tactile sensors based on electrical impedance tomography. Particularly, we tested our framework on the development of a piezoresistive insole-shaped sensor prototype. Our approach couples the implementation of the forward model through a physics-based general purpose FEM software and an ANN model for the inverse problem solution. First, we developed a FEM forward model in COMSOL Multyphysics, and we optimized the parameters of the model to better resemble the prototype characteristics. Then, we trained an ANN model with an "artificial" dataset generated by feeding the forward model with a large set of different conductivity distribution samples and measuring the voltage at the boundary electrodes. For comparison, we employed the forward model also to compute the sensitivity matrix, which is required to apply standard linear reconstruction methods. We statistically compared the performance of the proposed machine learning approach with those of standard linear reconstruction methods. The results on simulated data highlight the higher accuracy of the ANN with respect to the other methods. In particular, the mean conductivity RMSE is 0.8 S/m. Finally, we tested our approach with the physical prototype to evaluate the performance in touch position detection. Again, the ANN achieves the minimum mean position error (5.74 mm), demonstrating the feasibility of using machine learning trained with artificial datasets for solving the inverse problem in EIT-based tactile sensors.</description><subject>Conductivity</subject><subject>Datasets</subject><subject>Electrical impedance</subject><subject>Electrical impedance tomography</subject><subject>Electrodes</subject><subject>finite element modeling</subject><subject>Insoles</subject><subject>Inverse problems</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Performance evaluation</subject><subject>Position errors</subject><subject>Prototypes</subject><subject>Reconstruction</subject><subject>Sensors</subject><subject>Shape</subject><subject>Statistical methods</subject><subject>tactile sensing</subject><subject>Tactile sensors</subject><subject>Tactile sensors (robotics)</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM9LwzAYhoMoOKd_gHgJeO7M7zRHlamTqYNN8BayNHWZbTqT7rD_3pYOT997eN73gweAa4wmGCN197qcvk8IImRCMWOI5idghDnPMyxZftpnijJG5dc5uEhpixBWkssR-FlsDsnblD2Y5Aq49PW-Mq1vAjShgG_GbnxwcO5MDD58w7KJsN04uIjGtt6aCs7qXeVqF9qh1ZRwOlsd11Y9VDm4dCE1MV2Cs9JUyV0d7xh8Pk1Xjy_Z_ON59ng_zyxDss0UkaQ0eE0pxkJyUTIkHKGYiMLYdSGUkqVixDqFqDUSFbkihq8plgIzJQo6BrfD7i42v3uXWr1t9jF0LzURlCPGKOcdhQfKxial6Eq9i7428aAx0r1T3TvVvVN9dNp1boaOd87980rkndmc_gG5EHHl</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Biasi, Niccolo</creator><creator>Gargano, Andrea</creator><creator>Arcarisi, Lucia</creator><creator>Carbonaro, Nicola</creator><creator>Tognetti, Alessandro</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8194-1010</orcidid><orcidid>https://orcid.org/0000-0002-9997-2592</orcidid><orcidid>https://orcid.org/0000-0001-6753-2333</orcidid><orcidid>https://orcid.org/0000-0001-9848-4071</orcidid></search><sort><creationdate>20220301</creationdate><title>Physics-Based Simulation and Machine Learning for the Practical Implementation of EIT-Based Tactile Sensors</title><author>Biasi, Niccolo ; Gargano, Andrea ; Arcarisi, Lucia ; Carbonaro, Nicola ; Tognetti, Alessandro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-9272fa1b33116756f406e23126dacbd6997f942ce903ca70d892a5b31761496d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Conductivity</topic><topic>Datasets</topic><topic>Electrical impedance</topic><topic>Electrical impedance tomography</topic><topic>Electrodes</topic><topic>finite element modeling</topic><topic>Insoles</topic><topic>Inverse problems</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Performance evaluation</topic><topic>Position errors</topic><topic>Prototypes</topic><topic>Reconstruction</topic><topic>Sensors</topic><topic>Shape</topic><topic>Statistical methods</topic><topic>tactile sensing</topic><topic>Tactile sensors</topic><topic>Tactile sensors (robotics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Biasi, Niccolo</creatorcontrib><creatorcontrib>Gargano, Andrea</creatorcontrib><creatorcontrib>Arcarisi, Lucia</creatorcontrib><creatorcontrib>Carbonaro, Nicola</creatorcontrib><creatorcontrib>Tognetti, Alessandro</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Biasi, Niccolo</au><au>Gargano, Andrea</au><au>Arcarisi, Lucia</au><au>Carbonaro, Nicola</au><au>Tognetti, Alessandro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physics-Based Simulation and Machine Learning for the Practical Implementation of EIT-Based Tactile Sensors</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>22</volume><issue>5</issue><spage>4186</spage><epage>4196</epage><pages>4186-4196</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>This work reports an innovative framework toward the practical implementation of tactile sensors based on electrical impedance tomography. Particularly, we tested our framework on the development of a piezoresistive insole-shaped sensor prototype. Our approach couples the implementation of the forward model through a physics-based general purpose FEM software and an ANN model for the inverse problem solution. First, we developed a FEM forward model in COMSOL Multyphysics, and we optimized the parameters of the model to better resemble the prototype characteristics. Then, we trained an ANN model with an "artificial" dataset generated by feeding the forward model with a large set of different conductivity distribution samples and measuring the voltage at the boundary electrodes. For comparison, we employed the forward model also to compute the sensitivity matrix, which is required to apply standard linear reconstruction methods. We statistically compared the performance of the proposed machine learning approach with those of standard linear reconstruction methods. The results on simulated data highlight the higher accuracy of the ANN with respect to the other methods. In particular, the mean conductivity RMSE is 0.8 S/m. Finally, we tested our approach with the physical prototype to evaluate the performance in touch position detection. Again, the ANN achieves the minimum mean position error (5.74 mm), demonstrating the feasibility of using machine learning trained with artificial datasets for solving the inverse problem in EIT-based tactile sensors.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2022.3144038</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8194-1010</orcidid><orcidid>https://orcid.org/0000-0002-9997-2592</orcidid><orcidid>https://orcid.org/0000-0001-6753-2333</orcidid><orcidid>https://orcid.org/0000-0001-9848-4071</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2022-03, Vol.22 (5), p.4186-4196 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_ieee_primary_9684378 |
source | IEEE Electronic Library (IEL) |
subjects | Conductivity Datasets Electrical impedance Electrical impedance tomography Electrodes finite element modeling Insoles Inverse problems Machine learning Mathematical models Performance evaluation Position errors Prototypes Reconstruction Sensors Shape Statistical methods tactile sensing Tactile sensors Tactile sensors (robotics) |
title | Physics-Based Simulation and Machine Learning for the Practical Implementation of EIT-Based Tactile Sensors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T22%3A04%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physics-Based%20Simulation%20and%20Machine%20Learning%20for%20the%20Practical%20Implementation%20of%20EIT-Based%20Tactile%20Sensors&rft.jtitle=IEEE%20sensors%20journal&rft.au=Biasi,%20Niccolo&rft.date=2022-03-01&rft.volume=22&rft.issue=5&rft.spage=4186&rft.epage=4196&rft.pages=4186-4196&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2022.3144038&rft_dat=%3Cproquest_RIE%3E2635044355%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2635044355&rft_id=info:pmid/&rft_ieee_id=9684378&rfr_iscdi=true |