Physics-Based Simulation and Machine Learning for the Practical Implementation of EIT-Based Tactile Sensors

This work reports an innovative framework toward the practical implementation of tactile sensors based on electrical impedance tomography. Particularly, we tested our framework on the development of a piezoresistive insole-shaped sensor prototype. Our approach couples the implementation of the forwa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2022-03, Vol.22 (5), p.4186-4196
Hauptverfasser: Biasi, Niccolo, Gargano, Andrea, Arcarisi, Lucia, Carbonaro, Nicola, Tognetti, Alessandro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4196
container_issue 5
container_start_page 4186
container_title IEEE sensors journal
container_volume 22
creator Biasi, Niccolo
Gargano, Andrea
Arcarisi, Lucia
Carbonaro, Nicola
Tognetti, Alessandro
description This work reports an innovative framework toward the practical implementation of tactile sensors based on electrical impedance tomography. Particularly, we tested our framework on the development of a piezoresistive insole-shaped sensor prototype. Our approach couples the implementation of the forward model through a physics-based general purpose FEM software and an ANN model for the inverse problem solution. First, we developed a FEM forward model in COMSOL Multyphysics, and we optimized the parameters of the model to better resemble the prototype characteristics. Then, we trained an ANN model with an "artificial" dataset generated by feeding the forward model with a large set of different conductivity distribution samples and measuring the voltage at the boundary electrodes. For comparison, we employed the forward model also to compute the sensitivity matrix, which is required to apply standard linear reconstruction methods. We statistically compared the performance of the proposed machine learning approach with those of standard linear reconstruction methods. The results on simulated data highlight the higher accuracy of the ANN with respect to the other methods. In particular, the mean conductivity RMSE is 0.8 S/m. Finally, we tested our approach with the physical prototype to evaluate the performance in touch position detection. Again, the ANN achieves the minimum mean position error (5.74 mm), demonstrating the feasibility of using machine learning trained with artificial datasets for solving the inverse problem in EIT-based tactile sensors.
doi_str_mv 10.1109/JSEN.2022.3144038
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9684378</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9684378</ieee_id><sourcerecordid>2635044355</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-9272fa1b33116756f406e23126dacbd6997f942ce903ca70d892a5b31761496d3</originalsourceid><addsrcrecordid>eNo9kM9LwzAYhoMoOKd_gHgJeO7M7zRHlamTqYNN8BayNHWZbTqT7rD_3pYOT997eN73gweAa4wmGCN197qcvk8IImRCMWOI5idghDnPMyxZftpnijJG5dc5uEhpixBWkssR-FlsDsnblD2Y5Aq49PW-Mq1vAjShgG_GbnxwcO5MDD58w7KJsN04uIjGtt6aCs7qXeVqF9qh1ZRwOlsd11Y9VDm4dCE1MV2Cs9JUyV0d7xh8Pk1Xjy_Z_ON59ng_zyxDss0UkaQ0eE0pxkJyUTIkHKGYiMLYdSGUkqVixDqFqDUSFbkihq8plgIzJQo6BrfD7i42v3uXWr1t9jF0LzURlCPGKOcdhQfKxial6Eq9i7428aAx0r1T3TvVvVN9dNp1boaOd87980rkndmc_gG5EHHl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2635044355</pqid></control><display><type>article</type><title>Physics-Based Simulation and Machine Learning for the Practical Implementation of EIT-Based Tactile Sensors</title><source>IEEE Electronic Library (IEL)</source><creator>Biasi, Niccolo ; Gargano, Andrea ; Arcarisi, Lucia ; Carbonaro, Nicola ; Tognetti, Alessandro</creator><creatorcontrib>Biasi, Niccolo ; Gargano, Andrea ; Arcarisi, Lucia ; Carbonaro, Nicola ; Tognetti, Alessandro</creatorcontrib><description>This work reports an innovative framework toward the practical implementation of tactile sensors based on electrical impedance tomography. Particularly, we tested our framework on the development of a piezoresistive insole-shaped sensor prototype. Our approach couples the implementation of the forward model through a physics-based general purpose FEM software and an ANN model for the inverse problem solution. First, we developed a FEM forward model in COMSOL Multyphysics, and we optimized the parameters of the model to better resemble the prototype characteristics. Then, we trained an ANN model with an "artificial" dataset generated by feeding the forward model with a large set of different conductivity distribution samples and measuring the voltage at the boundary electrodes. For comparison, we employed the forward model also to compute the sensitivity matrix, which is required to apply standard linear reconstruction methods. We statistically compared the performance of the proposed machine learning approach with those of standard linear reconstruction methods. The results on simulated data highlight the higher accuracy of the ANN with respect to the other methods. In particular, the mean conductivity RMSE is 0.8 S/m. Finally, we tested our approach with the physical prototype to evaluate the performance in touch position detection. Again, the ANN achieves the minimum mean position error (5.74 mm), demonstrating the feasibility of using machine learning trained with artificial datasets for solving the inverse problem in EIT-based tactile sensors.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2022.3144038</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Conductivity ; Datasets ; Electrical impedance ; Electrical impedance tomography ; Electrodes ; finite element modeling ; Insoles ; Inverse problems ; Machine learning ; Mathematical models ; Performance evaluation ; Position errors ; Prototypes ; Reconstruction ; Sensors ; Shape ; Statistical methods ; tactile sensing ; Tactile sensors ; Tactile sensors (robotics)</subject><ispartof>IEEE sensors journal, 2022-03, Vol.22 (5), p.4186-4196</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-9272fa1b33116756f406e23126dacbd6997f942ce903ca70d892a5b31761496d3</citedby><cites>FETCH-LOGICAL-c407t-9272fa1b33116756f406e23126dacbd6997f942ce903ca70d892a5b31761496d3</cites><orcidid>0000-0001-8194-1010 ; 0000-0002-9997-2592 ; 0000-0001-6753-2333 ; 0000-0001-9848-4071</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9684378$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9684378$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Biasi, Niccolo</creatorcontrib><creatorcontrib>Gargano, Andrea</creatorcontrib><creatorcontrib>Arcarisi, Lucia</creatorcontrib><creatorcontrib>Carbonaro, Nicola</creatorcontrib><creatorcontrib>Tognetti, Alessandro</creatorcontrib><title>Physics-Based Simulation and Machine Learning for the Practical Implementation of EIT-Based Tactile Sensors</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>This work reports an innovative framework toward the practical implementation of tactile sensors based on electrical impedance tomography. Particularly, we tested our framework on the development of a piezoresistive insole-shaped sensor prototype. Our approach couples the implementation of the forward model through a physics-based general purpose FEM software and an ANN model for the inverse problem solution. First, we developed a FEM forward model in COMSOL Multyphysics, and we optimized the parameters of the model to better resemble the prototype characteristics. Then, we trained an ANN model with an "artificial" dataset generated by feeding the forward model with a large set of different conductivity distribution samples and measuring the voltage at the boundary electrodes. For comparison, we employed the forward model also to compute the sensitivity matrix, which is required to apply standard linear reconstruction methods. We statistically compared the performance of the proposed machine learning approach with those of standard linear reconstruction methods. The results on simulated data highlight the higher accuracy of the ANN with respect to the other methods. In particular, the mean conductivity RMSE is 0.8 S/m. Finally, we tested our approach with the physical prototype to evaluate the performance in touch position detection. Again, the ANN achieves the minimum mean position error (5.74 mm), demonstrating the feasibility of using machine learning trained with artificial datasets for solving the inverse problem in EIT-based tactile sensors.</description><subject>Conductivity</subject><subject>Datasets</subject><subject>Electrical impedance</subject><subject>Electrical impedance tomography</subject><subject>Electrodes</subject><subject>finite element modeling</subject><subject>Insoles</subject><subject>Inverse problems</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Performance evaluation</subject><subject>Position errors</subject><subject>Prototypes</subject><subject>Reconstruction</subject><subject>Sensors</subject><subject>Shape</subject><subject>Statistical methods</subject><subject>tactile sensing</subject><subject>Tactile sensors</subject><subject>Tactile sensors (robotics)</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM9LwzAYhoMoOKd_gHgJeO7M7zRHlamTqYNN8BayNHWZbTqT7rD_3pYOT997eN73gweAa4wmGCN197qcvk8IImRCMWOI5idghDnPMyxZftpnijJG5dc5uEhpixBWkssR-FlsDsnblD2Y5Aq49PW-Mq1vAjShgG_GbnxwcO5MDD58w7KJsN04uIjGtt6aCs7qXeVqF9qh1ZRwOlsd11Y9VDm4dCE1MV2Cs9JUyV0d7xh8Pk1Xjy_Z_ON59ng_zyxDss0UkaQ0eE0pxkJyUTIkHKGYiMLYdSGUkqVixDqFqDUSFbkihq8plgIzJQo6BrfD7i42v3uXWr1t9jF0LzURlCPGKOcdhQfKxial6Eq9i7428aAx0r1T3TvVvVN9dNp1boaOd87980rkndmc_gG5EHHl</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Biasi, Niccolo</creator><creator>Gargano, Andrea</creator><creator>Arcarisi, Lucia</creator><creator>Carbonaro, Nicola</creator><creator>Tognetti, Alessandro</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8194-1010</orcidid><orcidid>https://orcid.org/0000-0002-9997-2592</orcidid><orcidid>https://orcid.org/0000-0001-6753-2333</orcidid><orcidid>https://orcid.org/0000-0001-9848-4071</orcidid></search><sort><creationdate>20220301</creationdate><title>Physics-Based Simulation and Machine Learning for the Practical Implementation of EIT-Based Tactile Sensors</title><author>Biasi, Niccolo ; Gargano, Andrea ; Arcarisi, Lucia ; Carbonaro, Nicola ; Tognetti, Alessandro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-9272fa1b33116756f406e23126dacbd6997f942ce903ca70d892a5b31761496d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Conductivity</topic><topic>Datasets</topic><topic>Electrical impedance</topic><topic>Electrical impedance tomography</topic><topic>Electrodes</topic><topic>finite element modeling</topic><topic>Insoles</topic><topic>Inverse problems</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Performance evaluation</topic><topic>Position errors</topic><topic>Prototypes</topic><topic>Reconstruction</topic><topic>Sensors</topic><topic>Shape</topic><topic>Statistical methods</topic><topic>tactile sensing</topic><topic>Tactile sensors</topic><topic>Tactile sensors (robotics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Biasi, Niccolo</creatorcontrib><creatorcontrib>Gargano, Andrea</creatorcontrib><creatorcontrib>Arcarisi, Lucia</creatorcontrib><creatorcontrib>Carbonaro, Nicola</creatorcontrib><creatorcontrib>Tognetti, Alessandro</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Biasi, Niccolo</au><au>Gargano, Andrea</au><au>Arcarisi, Lucia</au><au>Carbonaro, Nicola</au><au>Tognetti, Alessandro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physics-Based Simulation and Machine Learning for the Practical Implementation of EIT-Based Tactile Sensors</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>22</volume><issue>5</issue><spage>4186</spage><epage>4196</epage><pages>4186-4196</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>This work reports an innovative framework toward the practical implementation of tactile sensors based on electrical impedance tomography. Particularly, we tested our framework on the development of a piezoresistive insole-shaped sensor prototype. Our approach couples the implementation of the forward model through a physics-based general purpose FEM software and an ANN model for the inverse problem solution. First, we developed a FEM forward model in COMSOL Multyphysics, and we optimized the parameters of the model to better resemble the prototype characteristics. Then, we trained an ANN model with an "artificial" dataset generated by feeding the forward model with a large set of different conductivity distribution samples and measuring the voltage at the boundary electrodes. For comparison, we employed the forward model also to compute the sensitivity matrix, which is required to apply standard linear reconstruction methods. We statistically compared the performance of the proposed machine learning approach with those of standard linear reconstruction methods. The results on simulated data highlight the higher accuracy of the ANN with respect to the other methods. In particular, the mean conductivity RMSE is 0.8 S/m. Finally, we tested our approach with the physical prototype to evaluate the performance in touch position detection. Again, the ANN achieves the minimum mean position error (5.74 mm), demonstrating the feasibility of using machine learning trained with artificial datasets for solving the inverse problem in EIT-based tactile sensors.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2022.3144038</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8194-1010</orcidid><orcidid>https://orcid.org/0000-0002-9997-2592</orcidid><orcidid>https://orcid.org/0000-0001-6753-2333</orcidid><orcidid>https://orcid.org/0000-0001-9848-4071</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2022-03, Vol.22 (5), p.4186-4196
issn 1530-437X
1558-1748
language eng
recordid cdi_ieee_primary_9684378
source IEEE Electronic Library (IEL)
subjects Conductivity
Datasets
Electrical impedance
Electrical impedance tomography
Electrodes
finite element modeling
Insoles
Inverse problems
Machine learning
Mathematical models
Performance evaluation
Position errors
Prototypes
Reconstruction
Sensors
Shape
Statistical methods
tactile sensing
Tactile sensors
Tactile sensors (robotics)
title Physics-Based Simulation and Machine Learning for the Practical Implementation of EIT-Based Tactile Sensors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T22%3A04%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physics-Based%20Simulation%20and%20Machine%20Learning%20for%20the%20Practical%20Implementation%20of%20EIT-Based%20Tactile%20Sensors&rft.jtitle=IEEE%20sensors%20journal&rft.au=Biasi,%20Niccolo&rft.date=2022-03-01&rft.volume=22&rft.issue=5&rft.spage=4186&rft.epage=4196&rft.pages=4186-4196&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2022.3144038&rft_dat=%3Cproquest_RIE%3E2635044355%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2635044355&rft_id=info:pmid/&rft_ieee_id=9684378&rfr_iscdi=true