3-D Joint Inversion of Airborne Electromagnetic and Magnetic Data Based on Local Pearson Correlation Constraints

Based on the spatial structure correlation in different geophysical parameters, we propose a new 3-D joint inversion method for frequency-domain airborne electromagnetic (AEM) and airborne magnetic (AirMag) data by incorporating a local Pearson correlation constraint (LPCC). For each iteration, the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2022, Vol.60, p.1-13
Hauptverfasser: Liu, Yunhe, Na, Xu, Yin, Changchun, Su, Yang, Sun, Siyuan, Zhang, Bo, Ren, Xiuyan, Baranwal, Vikas Chand
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 60
creator Liu, Yunhe
Na, Xu
Yin, Changchun
Su, Yang
Sun, Siyuan
Zhang, Bo
Ren, Xiuyan
Baranwal, Vikas Chand
description Based on the spatial structure correlation in different geophysical parameters, we propose a new 3-D joint inversion method for frequency-domain airborne electromagnetic (AEM) and airborne magnetic (AirMag) data by incorporating a local Pearson correlation constraint (LPCC). For each iteration, the entire model is separated into multiple subdomains and the Pearson correlation coefficients of resistivity and magnetization in the subdomain are employed as the additional regularization term to do the joint constraint. This new regularization term is continuously updated in the inversion process to ensure that the resistivity and magnetization models in two separated inversions converge to a similar spatial structure. As a statistics technology, the LPCC-based joint inversion scheme not only has the advantages of the conventional joint inversions, but also can implement the structural constraints in different scales by selecting different sizes of the subdomain. This provides the flexibility for solving multiscale problems. Synthetic examples show that the joint inversion can improve the overall inversion resolution by combining the high vertical resolution of the EM method and large exploration depth and high horizontal resolution of the magnetic method. In the application to field survey datasets, the joint inversion delivers better results than those of separate inversions, which further verifies the effectiveness of our method.
doi_str_mv 10.1109/TGRS.2022.3143659
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9682728</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9682728</ieee_id><sourcerecordid>2639933825</sourcerecordid><originalsourceid>FETCH-LOGICAL-c223t-d6a01c29326c228a8fb34f65a2f5bbc9567b19f628428210a5a9cd6bca2f25aa3</originalsourceid><addsrcrecordid>eNo9kEFPAjEQhRujiYj-AOOliefFdrot7REREYPRKJ43s92uWQJbbIuJ_95F0NPMm7w3L_kIueRswDkzN4vp69sAGMBA8FwoaY5Ij0upM6by_Jj0GDcqA23glJzFuGSM55IPe2Qjsjv66Js20Vn75UJsfEt9TUdNKH1oHZ2snE3Br_GjdamxFNuKPv2JO0xIbzG6inaxube4oi8OQ-zU2IfgVpia372NKWDXEs_JSY2r6C4Os0_e7yeL8UM2f57OxqN5ZgFEyiqFjFswAlR30KjrUuS1kgi1LEtrpBqW3NQKdA4aOEOJxlaqtJ0BJKLok-v9303wn1sXU7H029B2lQUoYYwQGmTn4nuXDT7G4OpiE5o1hu-Cs2IHttiBLXZgiwPYLnO1zzTOuX-_URqGoMUPfnF0rA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2639933825</pqid></control><display><type>article</type><title>3-D Joint Inversion of Airborne Electromagnetic and Magnetic Data Based on Local Pearson Correlation Constraints</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Yunhe ; Na, Xu ; Yin, Changchun ; Su, Yang ; Sun, Siyuan ; Zhang, Bo ; Ren, Xiuyan ; Baranwal, Vikas Chand</creator><creatorcontrib>Liu, Yunhe ; Na, Xu ; Yin, Changchun ; Su, Yang ; Sun, Siyuan ; Zhang, Bo ; Ren, Xiuyan ; Baranwal, Vikas Chand</creatorcontrib><description>Based on the spatial structure correlation in different geophysical parameters, we propose a new 3-D joint inversion method for frequency-domain airborne electromagnetic (AEM) and airborne magnetic (AirMag) data by incorporating a local Pearson correlation constraint (LPCC). For each iteration, the entire model is separated into multiple subdomains and the Pearson correlation coefficients of resistivity and magnetization in the subdomain are employed as the additional regularization term to do the joint constraint. This new regularization term is continuously updated in the inversion process to ensure that the resistivity and magnetization models in two separated inversions converge to a similar spatial structure. As a statistics technology, the LPCC-based joint inversion scheme not only has the advantages of the conventional joint inversions, but also can implement the structural constraints in different scales by selecting different sizes of the subdomain. This provides the flexibility for solving multiscale problems. Synthetic examples show that the joint inversion can improve the overall inversion resolution by combining the high vertical resolution of the EM method and large exploration depth and high horizontal resolution of the magnetic method. In the application to field survey datasets, the joint inversion delivers better results than those of separate inversions, which further verifies the effectiveness of our method.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2022.3143659</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>3-D joint inversion ; airborne electromagnetic (AEM) ; airborne magnetic (AirMag) ; Atmospheric modeling ; Coefficients ; Correlation ; Correlation coefficient ; Correlation coefficients ; Electrical resistivity ; Inversions ; Iterative methods ; Linear programming ; local Pearson correlation coefficient (PCC) ; Magnetic data ; Magnetic methods ; Magnetic separation ; Magnetization ; Mathematical models ; Regularization ; Resolution ; Statistical methods ; Surveying ; Three-dimensional displays</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-13</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c223t-d6a01c29326c228a8fb34f65a2f5bbc9567b19f628428210a5a9cd6bca2f25aa3</citedby><cites>FETCH-LOGICAL-c223t-d6a01c29326c228a8fb34f65a2f5bbc9567b19f628428210a5a9cd6bca2f25aa3</cites><orcidid>0000-0001-5709-7294 ; 0000-0002-3760-6562 ; 0000-0003-4046-1015 ; 0000-0001-8685-5584 ; 0000-0002-0704-9806 ; 0000-0002-3634-9832</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9682728$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9682728$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Yunhe</creatorcontrib><creatorcontrib>Na, Xu</creatorcontrib><creatorcontrib>Yin, Changchun</creatorcontrib><creatorcontrib>Su, Yang</creatorcontrib><creatorcontrib>Sun, Siyuan</creatorcontrib><creatorcontrib>Zhang, Bo</creatorcontrib><creatorcontrib>Ren, Xiuyan</creatorcontrib><creatorcontrib>Baranwal, Vikas Chand</creatorcontrib><title>3-D Joint Inversion of Airborne Electromagnetic and Magnetic Data Based on Local Pearson Correlation Constraints</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Based on the spatial structure correlation in different geophysical parameters, we propose a new 3-D joint inversion method for frequency-domain airborne electromagnetic (AEM) and airborne magnetic (AirMag) data by incorporating a local Pearson correlation constraint (LPCC). For each iteration, the entire model is separated into multiple subdomains and the Pearson correlation coefficients of resistivity and magnetization in the subdomain are employed as the additional regularization term to do the joint constraint. This new regularization term is continuously updated in the inversion process to ensure that the resistivity and magnetization models in two separated inversions converge to a similar spatial structure. As a statistics technology, the LPCC-based joint inversion scheme not only has the advantages of the conventional joint inversions, but also can implement the structural constraints in different scales by selecting different sizes of the subdomain. This provides the flexibility for solving multiscale problems. Synthetic examples show that the joint inversion can improve the overall inversion resolution by combining the high vertical resolution of the EM method and large exploration depth and high horizontal resolution of the magnetic method. In the application to field survey datasets, the joint inversion delivers better results than those of separate inversions, which further verifies the effectiveness of our method.</description><subject>3-D joint inversion</subject><subject>airborne electromagnetic (AEM)</subject><subject>airborne magnetic (AirMag)</subject><subject>Atmospheric modeling</subject><subject>Coefficients</subject><subject>Correlation</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Electrical resistivity</subject><subject>Inversions</subject><subject>Iterative methods</subject><subject>Linear programming</subject><subject>local Pearson correlation coefficient (PCC)</subject><subject>Magnetic data</subject><subject>Magnetic methods</subject><subject>Magnetic separation</subject><subject>Magnetization</subject><subject>Mathematical models</subject><subject>Regularization</subject><subject>Resolution</subject><subject>Statistical methods</subject><subject>Surveying</subject><subject>Three-dimensional displays</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFPAjEQhRujiYj-AOOliefFdrot7REREYPRKJ43s92uWQJbbIuJ_95F0NPMm7w3L_kIueRswDkzN4vp69sAGMBA8FwoaY5Ij0upM6by_Jj0GDcqA23glJzFuGSM55IPe2Qjsjv66Js20Vn75UJsfEt9TUdNKH1oHZ2snE3Br_GjdamxFNuKPv2JO0xIbzG6inaxube4oi8OQ-zU2IfgVpia372NKWDXEs_JSY2r6C4Os0_e7yeL8UM2f57OxqN5ZgFEyiqFjFswAlR30KjrUuS1kgi1LEtrpBqW3NQKdA4aOEOJxlaqtJ0BJKLok-v9303wn1sXU7H029B2lQUoYYwQGmTn4nuXDT7G4OpiE5o1hu-Cs2IHttiBLXZgiwPYLnO1zzTOuX-_URqGoMUPfnF0rA</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Liu, Yunhe</creator><creator>Na, Xu</creator><creator>Yin, Changchun</creator><creator>Su, Yang</creator><creator>Sun, Siyuan</creator><creator>Zhang, Bo</creator><creator>Ren, Xiuyan</creator><creator>Baranwal, Vikas Chand</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5709-7294</orcidid><orcidid>https://orcid.org/0000-0002-3760-6562</orcidid><orcidid>https://orcid.org/0000-0003-4046-1015</orcidid><orcidid>https://orcid.org/0000-0001-8685-5584</orcidid><orcidid>https://orcid.org/0000-0002-0704-9806</orcidid><orcidid>https://orcid.org/0000-0002-3634-9832</orcidid></search><sort><creationdate>2022</creationdate><title>3-D Joint Inversion of Airborne Electromagnetic and Magnetic Data Based on Local Pearson Correlation Constraints</title><author>Liu, Yunhe ; Na, Xu ; Yin, Changchun ; Su, Yang ; Sun, Siyuan ; Zhang, Bo ; Ren, Xiuyan ; Baranwal, Vikas Chand</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c223t-d6a01c29326c228a8fb34f65a2f5bbc9567b19f628428210a5a9cd6bca2f25aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>3-D joint inversion</topic><topic>airborne electromagnetic (AEM)</topic><topic>airborne magnetic (AirMag)</topic><topic>Atmospheric modeling</topic><topic>Coefficients</topic><topic>Correlation</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Electrical resistivity</topic><topic>Inversions</topic><topic>Iterative methods</topic><topic>Linear programming</topic><topic>local Pearson correlation coefficient (PCC)</topic><topic>Magnetic data</topic><topic>Magnetic methods</topic><topic>Magnetic separation</topic><topic>Magnetization</topic><topic>Mathematical models</topic><topic>Regularization</topic><topic>Resolution</topic><topic>Statistical methods</topic><topic>Surveying</topic><topic>Three-dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yunhe</creatorcontrib><creatorcontrib>Na, Xu</creatorcontrib><creatorcontrib>Yin, Changchun</creatorcontrib><creatorcontrib>Su, Yang</creatorcontrib><creatorcontrib>Sun, Siyuan</creatorcontrib><creatorcontrib>Zhang, Bo</creatorcontrib><creatorcontrib>Ren, Xiuyan</creatorcontrib><creatorcontrib>Baranwal, Vikas Chand</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Yunhe</au><au>Na, Xu</au><au>Yin, Changchun</au><au>Su, Yang</au><au>Sun, Siyuan</au><au>Zhang, Bo</au><au>Ren, Xiuyan</au><au>Baranwal, Vikas Chand</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3-D Joint Inversion of Airborne Electromagnetic and Magnetic Data Based on Local Pearson Correlation Constraints</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2022</date><risdate>2022</risdate><volume>60</volume><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Based on the spatial structure correlation in different geophysical parameters, we propose a new 3-D joint inversion method for frequency-domain airborne electromagnetic (AEM) and airborne magnetic (AirMag) data by incorporating a local Pearson correlation constraint (LPCC). For each iteration, the entire model is separated into multiple subdomains and the Pearson correlation coefficients of resistivity and magnetization in the subdomain are employed as the additional regularization term to do the joint constraint. This new regularization term is continuously updated in the inversion process to ensure that the resistivity and magnetization models in two separated inversions converge to a similar spatial structure. As a statistics technology, the LPCC-based joint inversion scheme not only has the advantages of the conventional joint inversions, but also can implement the structural constraints in different scales by selecting different sizes of the subdomain. This provides the flexibility for solving multiscale problems. Synthetic examples show that the joint inversion can improve the overall inversion resolution by combining the high vertical resolution of the EM method and large exploration depth and high horizontal resolution of the magnetic method. In the application to field survey datasets, the joint inversion delivers better results than those of separate inversions, which further verifies the effectiveness of our method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2022.3143659</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5709-7294</orcidid><orcidid>https://orcid.org/0000-0002-3760-6562</orcidid><orcidid>https://orcid.org/0000-0003-4046-1015</orcidid><orcidid>https://orcid.org/0000-0001-8685-5584</orcidid><orcidid>https://orcid.org/0000-0002-0704-9806</orcidid><orcidid>https://orcid.org/0000-0002-3634-9832</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-13
issn 0196-2892
1558-0644
language eng
recordid cdi_ieee_primary_9682728
source IEEE Electronic Library (IEL)
subjects 3-D joint inversion
airborne electromagnetic (AEM)
airborne magnetic (AirMag)
Atmospheric modeling
Coefficients
Correlation
Correlation coefficient
Correlation coefficients
Electrical resistivity
Inversions
Iterative methods
Linear programming
local Pearson correlation coefficient (PCC)
Magnetic data
Magnetic methods
Magnetic separation
Magnetization
Mathematical models
Regularization
Resolution
Statistical methods
Surveying
Three-dimensional displays
title 3-D Joint Inversion of Airborne Electromagnetic and Magnetic Data Based on Local Pearson Correlation Constraints
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T00%3A04%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3-D%20Joint%20Inversion%20of%20Airborne%20Electromagnetic%20and%20Magnetic%20Data%20Based%20on%20Local%20Pearson%20Correlation%20Constraints&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Liu,%20Yunhe&rft.date=2022&rft.volume=60&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2022.3143659&rft_dat=%3Cproquest_RIE%3E2639933825%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2639933825&rft_id=info:pmid/&rft_ieee_id=9682728&rfr_iscdi=true