Model Inspired Autoencoder for Unsupervised Hyperspectral Image Super-Resolution
This article focuses on hyperspectral image (HSI) super-resolution that aims to fuse a low-spatial-resolution HSI and a high-spatial-resolution multispectral image to form a high-spatial-resolution HSI (HR-HSI). Existing deep learning-based approaches are mostly supervised that rely on a large numbe...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2022, Vol.60, p.1-12 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 60 |
creator | Liu, Jianjun Wu, Zebin Xiao, Liang Wu, Xiao-Jun |
description | This article focuses on hyperspectral image (HSI) super-resolution that aims to fuse a low-spatial-resolution HSI and a high-spatial-resolution multispectral image to form a high-spatial-resolution HSI (HR-HSI). Existing deep learning-based approaches are mostly supervised that rely on a large number of labeled training samples, which is unrealistic. The commonly used model-based approaches are unsupervised and flexible but rely on handcrafted priors. Inspired by the specific properties of model, we make the first attempt to design a model-inspired deep network for HSI super-resolution in an unsupervised manner. This approach consists of an implicit autoencoder network built on the target HR-HSI that treats each pixel as an individual sample. The nonnegative matrix factorization (NMF) of the target HR-HSI is integrated into the autoencoder network, where the two NMF parts, spectral and spatial matrices, are treated as decoder parameters and hidden outputs, respectively. In the encoding stage, we present a pixelwise fusion model to estimate hidden outputs directly and then reformulate and unfold the model's algorithm to form the encoder network. With the specific architecture, the proposed network is similar to a manifold prior-based model and can be trained patch by patch rather than the entire images. Moreover, we propose an additional unsupervised network to estimate the point spread function and spectral response function. Experimental results conducted on both synthetic and real datasets demonstrate the effectiveness of the proposed approach. |
doi_str_mv | 10.1109/TGRS.2022.3143156 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9681709</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9681709</ieee_id><sourcerecordid>2639933291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-661239e3dd1def8d19bc99d21eae017dfcf38cf5e49f635a27465955e91bcb353</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxYMoOKcfQHwp-NyZmzRp8ziGbgNF2Z_n0CU30rE1NWmFfXtbNny6l3vOuQd-hDwCnQBQ9bKZr9YTRhmbcMg4CHlFRiBEkVKZZddkREHJlBWK3ZK7GPeUQiYgH5GvD2_xkCzr2FQBbTLtWo-16Y8hcT4k2zp2DYbfKvbi4tSvsUHThrLPHMtvTNaDnK4w-kPXVr6-JzeuPER8uMwx2b69bmaL9P1zvpxN31PDFG9TKYFxhdxasOgKC2pnlLIMsEQKuXXG8cI4gZlykouS5ZkUSghUsDM7LviYPJ__NsH_dBhbvfddqPtKzSRXinOmoHfB2WWCjzGg002ojmU4aaB6AKcHcHoApy_g-szTOVMh4r9fyQJyqvgfOUpqvQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2639933291</pqid></control><display><type>article</type><title>Model Inspired Autoencoder for Unsupervised Hyperspectral Image Super-Resolution</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Jianjun ; Wu, Zebin ; Xiao, Liang ; Wu, Xiao-Jun</creator><creatorcontrib>Liu, Jianjun ; Wu, Zebin ; Xiao, Liang ; Wu, Xiao-Jun</creatorcontrib><description>This article focuses on hyperspectral image (HSI) super-resolution that aims to fuse a low-spatial-resolution HSI and a high-spatial-resolution multispectral image to form a high-spatial-resolution HSI (HR-HSI). Existing deep learning-based approaches are mostly supervised that rely on a large number of labeled training samples, which is unrealistic. The commonly used model-based approaches are unsupervised and flexible but rely on handcrafted priors. Inspired by the specific properties of model, we make the first attempt to design a model-inspired deep network for HSI super-resolution in an unsupervised manner. This approach consists of an implicit autoencoder network built on the target HR-HSI that treats each pixel as an individual sample. The nonnegative matrix factorization (NMF) of the target HR-HSI is integrated into the autoencoder network, where the two NMF parts, spectral and spatial matrices, are treated as decoder parameters and hidden outputs, respectively. In the encoding stage, we present a pixelwise fusion model to estimate hidden outputs directly and then reformulate and unfold the model's algorithm to form the encoder network. With the specific architecture, the proposed network is similar to a manifold prior-based model and can be trained patch by patch rather than the entire images. Moreover, we propose an additional unsupervised network to estimate the point spread function and spectral response function. Experimental results conducted on both synthetic and real datasets demonstrate the effectiveness of the proposed approach.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2022.3143156</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Autoencoder ; Coders ; Decoding ; Deep learning ; Energy resolution ; Fuses ; hyperspectral image (HSI) ; Hyperspectral imaging ; Image resolution ; Machine learning ; nonnegative matrix factorization (NMF) ; Point spread functions ; Resolution ; Response functions ; Spatial resolution ; Spectral sensitivity ; super-resolution ; Superresolution ; Tensors ; unfolding</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-12</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-661239e3dd1def8d19bc99d21eae017dfcf38cf5e49f635a27465955e91bcb353</citedby><cites>FETCH-LOGICAL-c293t-661239e3dd1def8d19bc99d21eae017dfcf38cf5e49f635a27465955e91bcb353</cites><orcidid>0000-0002-7162-0202 ; 0000-0003-0178-9384 ; 0000-0003-0778-9094 ; 0000-0002-0310-5778</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9681709$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9681709$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Jianjun</creatorcontrib><creatorcontrib>Wu, Zebin</creatorcontrib><creatorcontrib>Xiao, Liang</creatorcontrib><creatorcontrib>Wu, Xiao-Jun</creatorcontrib><title>Model Inspired Autoencoder for Unsupervised Hyperspectral Image Super-Resolution</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>This article focuses on hyperspectral image (HSI) super-resolution that aims to fuse a low-spatial-resolution HSI and a high-spatial-resolution multispectral image to form a high-spatial-resolution HSI (HR-HSI). Existing deep learning-based approaches are mostly supervised that rely on a large number of labeled training samples, which is unrealistic. The commonly used model-based approaches are unsupervised and flexible but rely on handcrafted priors. Inspired by the specific properties of model, we make the first attempt to design a model-inspired deep network for HSI super-resolution in an unsupervised manner. This approach consists of an implicit autoencoder network built on the target HR-HSI that treats each pixel as an individual sample. The nonnegative matrix factorization (NMF) of the target HR-HSI is integrated into the autoencoder network, where the two NMF parts, spectral and spatial matrices, are treated as decoder parameters and hidden outputs, respectively. In the encoding stage, we present a pixelwise fusion model to estimate hidden outputs directly and then reformulate and unfold the model's algorithm to form the encoder network. With the specific architecture, the proposed network is similar to a manifold prior-based model and can be trained patch by patch rather than the entire images. Moreover, we propose an additional unsupervised network to estimate the point spread function and spectral response function. Experimental results conducted on both synthetic and real datasets demonstrate the effectiveness of the proposed approach.</description><subject>Algorithms</subject><subject>Autoencoder</subject><subject>Coders</subject><subject>Decoding</subject><subject>Deep learning</subject><subject>Energy resolution</subject><subject>Fuses</subject><subject>hyperspectral image (HSI)</subject><subject>Hyperspectral imaging</subject><subject>Image resolution</subject><subject>Machine learning</subject><subject>nonnegative matrix factorization (NMF)</subject><subject>Point spread functions</subject><subject>Resolution</subject><subject>Response functions</subject><subject>Spatial resolution</subject><subject>Spectral sensitivity</subject><subject>super-resolution</subject><subject>Superresolution</subject><subject>Tensors</subject><subject>unfolding</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF9LwzAUxYMoOKcfQHwp-NyZmzRp8ziGbgNF2Z_n0CU30rE1NWmFfXtbNny6l3vOuQd-hDwCnQBQ9bKZr9YTRhmbcMg4CHlFRiBEkVKZZddkREHJlBWK3ZK7GPeUQiYgH5GvD2_xkCzr2FQBbTLtWo-16Y8hcT4k2zp2DYbfKvbi4tSvsUHThrLPHMtvTNaDnK4w-kPXVr6-JzeuPER8uMwx2b69bmaL9P1zvpxN31PDFG9TKYFxhdxasOgKC2pnlLIMsEQKuXXG8cI4gZlykouS5ZkUSghUsDM7LviYPJ__NsH_dBhbvfddqPtKzSRXinOmoHfB2WWCjzGg002ojmU4aaB6AKcHcHoApy_g-szTOVMh4r9fyQJyqvgfOUpqvQ</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Liu, Jianjun</creator><creator>Wu, Zebin</creator><creator>Xiao, Liang</creator><creator>Wu, Xiao-Jun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7162-0202</orcidid><orcidid>https://orcid.org/0000-0003-0178-9384</orcidid><orcidid>https://orcid.org/0000-0003-0778-9094</orcidid><orcidid>https://orcid.org/0000-0002-0310-5778</orcidid></search><sort><creationdate>2022</creationdate><title>Model Inspired Autoencoder for Unsupervised Hyperspectral Image Super-Resolution</title><author>Liu, Jianjun ; Wu, Zebin ; Xiao, Liang ; Wu, Xiao-Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-661239e3dd1def8d19bc99d21eae017dfcf38cf5e49f635a27465955e91bcb353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Autoencoder</topic><topic>Coders</topic><topic>Decoding</topic><topic>Deep learning</topic><topic>Energy resolution</topic><topic>Fuses</topic><topic>hyperspectral image (HSI)</topic><topic>Hyperspectral imaging</topic><topic>Image resolution</topic><topic>Machine learning</topic><topic>nonnegative matrix factorization (NMF)</topic><topic>Point spread functions</topic><topic>Resolution</topic><topic>Response functions</topic><topic>Spatial resolution</topic><topic>Spectral sensitivity</topic><topic>super-resolution</topic><topic>Superresolution</topic><topic>Tensors</topic><topic>unfolding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jianjun</creatorcontrib><creatorcontrib>Wu, Zebin</creatorcontrib><creatorcontrib>Xiao, Liang</creatorcontrib><creatorcontrib>Wu, Xiao-Jun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Jianjun</au><au>Wu, Zebin</au><au>Xiao, Liang</au><au>Wu, Xiao-Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model Inspired Autoencoder for Unsupervised Hyperspectral Image Super-Resolution</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2022</date><risdate>2022</risdate><volume>60</volume><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>This article focuses on hyperspectral image (HSI) super-resolution that aims to fuse a low-spatial-resolution HSI and a high-spatial-resolution multispectral image to form a high-spatial-resolution HSI (HR-HSI). Existing deep learning-based approaches are mostly supervised that rely on a large number of labeled training samples, which is unrealistic. The commonly used model-based approaches are unsupervised and flexible but rely on handcrafted priors. Inspired by the specific properties of model, we make the first attempt to design a model-inspired deep network for HSI super-resolution in an unsupervised manner. This approach consists of an implicit autoencoder network built on the target HR-HSI that treats each pixel as an individual sample. The nonnegative matrix factorization (NMF) of the target HR-HSI is integrated into the autoencoder network, where the two NMF parts, spectral and spatial matrices, are treated as decoder parameters and hidden outputs, respectively. In the encoding stage, we present a pixelwise fusion model to estimate hidden outputs directly and then reformulate and unfold the model's algorithm to form the encoder network. With the specific architecture, the proposed network is similar to a manifold prior-based model and can be trained patch by patch rather than the entire images. Moreover, we propose an additional unsupervised network to estimate the point spread function and spectral response function. Experimental results conducted on both synthetic and real datasets demonstrate the effectiveness of the proposed approach.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2022.3143156</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7162-0202</orcidid><orcidid>https://orcid.org/0000-0003-0178-9384</orcidid><orcidid>https://orcid.org/0000-0003-0778-9094</orcidid><orcidid>https://orcid.org/0000-0002-0310-5778</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-12 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_ieee_primary_9681709 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Autoencoder Coders Decoding Deep learning Energy resolution Fuses hyperspectral image (HSI) Hyperspectral imaging Image resolution Machine learning nonnegative matrix factorization (NMF) Point spread functions Resolution Response functions Spatial resolution Spectral sensitivity super-resolution Superresolution Tensors unfolding |
title | Model Inspired Autoencoder for Unsupervised Hyperspectral Image Super-Resolution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T21%3A49%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model%20Inspired%20Autoencoder%20for%20Unsupervised%20Hyperspectral%20Image%20Super-Resolution&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Liu,%20Jianjun&rft.date=2022&rft.volume=60&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2022.3143156&rft_dat=%3Cproquest_RIE%3E2639933291%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2639933291&rft_id=info:pmid/&rft_ieee_id=9681709&rfr_iscdi=true |