Bodies Uncovered: Learning to Manipulate Real Blankets Around People via Physics Simulations

While robots present an opportunity to provide physical assistance to older adults and people with mobility impairments in bed, people frequently rest in bed with blankets that cover the majority of their body. To provide assistance for many daily self-care tasks, such as bathing, dressing, or ambul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics and automation letters 2022-04, Vol.7 (2), p.1984-1991
Hauptverfasser: Puthuveetil, Kavya, Kemp, Charles C., Erickson, Zackory
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1991
container_issue 2
container_start_page 1984
container_title IEEE robotics and automation letters
container_volume 7
creator Puthuveetil, Kavya
Kemp, Charles C.
Erickson, Zackory
description While robots present an opportunity to provide physical assistance to older adults and people with mobility impairments in bed, people frequently rest in bed with blankets that cover the majority of their body. To provide assistance for many daily self-care tasks, such as bathing, dressing, or ambulating, a caregiver must first uncover blankets from part of a person's body. In this work, we introduce a formulation for robotic bedding manipulation around people in which a robot uncovers a blanket from a target body part while ensuring the rest of the human body remains covered. We compare two approaches for optimizing policies which provide a robot with grasp and release points that uncover a target part of the body: 1) reinforcement learning and 2) self-supervised learning with optimization to generate training data. We trained and conducted evaluations of these policies in physics simulation environments that consist of a deformable cloth mesh covering a simulated human lying supine on a bed. In addition, we transfer simulation-trained policies to a real mobile manipulator and demonstrate that it can uncover a blanket from target body parts of a manikin lying in bed. Source code is available online^{3}.
doi_str_mv 10.1109/LRA.2022.3142732
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9681203</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9681203</ieee_id><sourcerecordid>2622829521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-644ac2443fbe5015422f81c204b24f66e9faa69087fbaea64540d6ed6147e6ce3</originalsourceid><addsrcrecordid>eNpNkM9LwzAUx4MoOHR3wUvAc2fykqatt234CyqO6W5CydpXzeySmbSD_fd2bIin9w6f7_c9PoRccTbinGW3-Xw8AgYwElxCIuCEDEAkSSQSpU7_7edkGMKKMcbjHsviAfmYuMpgoAtbui16rO5ojtpbYz9p6-iLtmbTNbpFOkfd0Emj7Te2gY6962xFZ-g2DdKt0XT2tQumDPTNrPcB42y4JGe1bgIOj_OCLB7u36dPUf76-Dwd51EJGW8jJaUuQUpRLzHuX5MAdcpLYHIJslYKs1prlbE0qZcatZKxZJXCSnGZoCpRXJCbQ-_Gu58OQ1usXOdtf7IABZBCFgPvKXagSu9C8FgXG2_W2u8Kzoq9xqLXWOw1FkeNfeT6EDGI-IdnKuXAhPgFttBthg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2622829521</pqid></control><display><type>article</type><title>Bodies Uncovered: Learning to Manipulate Real Blankets Around People via Physics Simulations</title><source>IEEE Electronic Library (IEL)</source><creator>Puthuveetil, Kavya ; Kemp, Charles C. ; Erickson, Zackory</creator><creatorcontrib>Puthuveetil, Kavya ; Kemp, Charles C. ; Erickson, Zackory</creatorcontrib><description>While robots present an opportunity to provide physical assistance to older adults and people with mobility impairments in bed, people frequently rest in bed with blankets that cover the majority of their body. To provide assistance for many daily self-care tasks, such as bathing, dressing, or ambulating, a caregiver must first uncover blankets from part of a person's body. In this work, we introduce a formulation for robotic bedding manipulation around people in which a robot uncovers a blanket from a target body part while ensuring the rest of the human body remains covered. We compare two approaches for optimizing policies which provide a robot with grasp and release points that uncover a target part of the body: 1) reinforcement learning and 2) self-supervised learning with optimization to generate training data. We trained and conducted evaluations of these policies in physics simulation environments that consist of a deformable cloth mesh covering a simulated human lying supine on a bed. In addition, we transfer simulation-trained policies to a real mobile manipulator and demonstrate that it can uncover a blanket from target body parts of a manikin lying in bed. Source code is available online&lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;^{3}&lt;/tex-math&gt;&lt;/inline-formula&gt;.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2022.3142732</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Bathing ; Body parts ; Deformable models ; Finite element method ; Formability ; Grasping (robotics) ; Machine learning ; Manipulators ; Optimization ; physical human-robot interaction ; Physically assistive devices ; Policies ; Reinforcement learning ; Robot sensing systems ; Robots ; Simulation ; simulation and animation ; Source code ; Task analysis ; Visualization</subject><ispartof>IEEE robotics and automation letters, 2022-04, Vol.7 (2), p.1984-1991</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-644ac2443fbe5015422f81c204b24f66e9faa69087fbaea64540d6ed6147e6ce3</citedby><cites>FETCH-LOGICAL-c291t-644ac2443fbe5015422f81c204b24f66e9faa69087fbaea64540d6ed6147e6ce3</cites><orcidid>0000-0003-4720-1136 ; 0000-0002-6760-6213 ; 0000-0003-2432-6577</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9681203$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9681203$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Puthuveetil, Kavya</creatorcontrib><creatorcontrib>Kemp, Charles C.</creatorcontrib><creatorcontrib>Erickson, Zackory</creatorcontrib><title>Bodies Uncovered: Learning to Manipulate Real Blankets Around People via Physics Simulations</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>While robots present an opportunity to provide physical assistance to older adults and people with mobility impairments in bed, people frequently rest in bed with blankets that cover the majority of their body. To provide assistance for many daily self-care tasks, such as bathing, dressing, or ambulating, a caregiver must first uncover blankets from part of a person's body. In this work, we introduce a formulation for robotic bedding manipulation around people in which a robot uncovers a blanket from a target body part while ensuring the rest of the human body remains covered. We compare two approaches for optimizing policies which provide a robot with grasp and release points that uncover a target part of the body: 1) reinforcement learning and 2) self-supervised learning with optimization to generate training data. We trained and conducted evaluations of these policies in physics simulation environments that consist of a deformable cloth mesh covering a simulated human lying supine on a bed. In addition, we transfer simulation-trained policies to a real mobile manipulator and demonstrate that it can uncover a blanket from target body parts of a manikin lying in bed. Source code is available online&lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;^{3}&lt;/tex-math&gt;&lt;/inline-formula&gt;.</description><subject>Bathing</subject><subject>Body parts</subject><subject>Deformable models</subject><subject>Finite element method</subject><subject>Formability</subject><subject>Grasping (robotics)</subject><subject>Machine learning</subject><subject>Manipulators</subject><subject>Optimization</subject><subject>physical human-robot interaction</subject><subject>Physically assistive devices</subject><subject>Policies</subject><subject>Reinforcement learning</subject><subject>Robot sensing systems</subject><subject>Robots</subject><subject>Simulation</subject><subject>simulation and animation</subject><subject>Source code</subject><subject>Task analysis</subject><subject>Visualization</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM9LwzAUx4MoOHR3wUvAc2fykqatt234CyqO6W5CydpXzeySmbSD_fd2bIin9w6f7_c9PoRccTbinGW3-Xw8AgYwElxCIuCEDEAkSSQSpU7_7edkGMKKMcbjHsviAfmYuMpgoAtbui16rO5ojtpbYz9p6-iLtmbTNbpFOkfd0Emj7Te2gY6962xFZ-g2DdKt0XT2tQumDPTNrPcB42y4JGe1bgIOj_OCLB7u36dPUf76-Dwd51EJGW8jJaUuQUpRLzHuX5MAdcpLYHIJslYKs1prlbE0qZcatZKxZJXCSnGZoCpRXJCbQ-_Gu58OQ1usXOdtf7IABZBCFgPvKXagSu9C8FgXG2_W2u8Kzoq9xqLXWOw1FkeNfeT6EDGI-IdnKuXAhPgFttBthg</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Puthuveetil, Kavya</creator><creator>Kemp, Charles C.</creator><creator>Erickson, Zackory</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4720-1136</orcidid><orcidid>https://orcid.org/0000-0002-6760-6213</orcidid><orcidid>https://orcid.org/0000-0003-2432-6577</orcidid></search><sort><creationdate>20220401</creationdate><title>Bodies Uncovered: Learning to Manipulate Real Blankets Around People via Physics Simulations</title><author>Puthuveetil, Kavya ; Kemp, Charles C. ; Erickson, Zackory</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-644ac2443fbe5015422f81c204b24f66e9faa69087fbaea64540d6ed6147e6ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bathing</topic><topic>Body parts</topic><topic>Deformable models</topic><topic>Finite element method</topic><topic>Formability</topic><topic>Grasping (robotics)</topic><topic>Machine learning</topic><topic>Manipulators</topic><topic>Optimization</topic><topic>physical human-robot interaction</topic><topic>Physically assistive devices</topic><topic>Policies</topic><topic>Reinforcement learning</topic><topic>Robot sensing systems</topic><topic>Robots</topic><topic>Simulation</topic><topic>simulation and animation</topic><topic>Source code</topic><topic>Task analysis</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Puthuveetil, Kavya</creatorcontrib><creatorcontrib>Kemp, Charles C.</creatorcontrib><creatorcontrib>Erickson, Zackory</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Puthuveetil, Kavya</au><au>Kemp, Charles C.</au><au>Erickson, Zackory</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bodies Uncovered: Learning to Manipulate Real Blankets Around People via Physics Simulations</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>7</volume><issue>2</issue><spage>1984</spage><epage>1991</epage><pages>1984-1991</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>While robots present an opportunity to provide physical assistance to older adults and people with mobility impairments in bed, people frequently rest in bed with blankets that cover the majority of their body. To provide assistance for many daily self-care tasks, such as bathing, dressing, or ambulating, a caregiver must first uncover blankets from part of a person's body. In this work, we introduce a formulation for robotic bedding manipulation around people in which a robot uncovers a blanket from a target body part while ensuring the rest of the human body remains covered. We compare two approaches for optimizing policies which provide a robot with grasp and release points that uncover a target part of the body: 1) reinforcement learning and 2) self-supervised learning with optimization to generate training data. We trained and conducted evaluations of these policies in physics simulation environments that consist of a deformable cloth mesh covering a simulated human lying supine on a bed. In addition, we transfer simulation-trained policies to a real mobile manipulator and demonstrate that it can uncover a blanket from target body parts of a manikin lying in bed. Source code is available online&lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;^{3}&lt;/tex-math&gt;&lt;/inline-formula&gt;.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2022.3142732</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-4720-1136</orcidid><orcidid>https://orcid.org/0000-0002-6760-6213</orcidid><orcidid>https://orcid.org/0000-0003-2432-6577</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2377-3766
ispartof IEEE robotics and automation letters, 2022-04, Vol.7 (2), p.1984-1991
issn 2377-3766
2377-3766
language eng
recordid cdi_ieee_primary_9681203
source IEEE Electronic Library (IEL)
subjects Bathing
Body parts
Deformable models
Finite element method
Formability
Grasping (robotics)
Machine learning
Manipulators
Optimization
physical human-robot interaction
Physically assistive devices
Policies
Reinforcement learning
Robot sensing systems
Robots
Simulation
simulation and animation
Source code
Task analysis
Visualization
title Bodies Uncovered: Learning to Manipulate Real Blankets Around People via Physics Simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T05%3A01%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bodies%20Uncovered:%20Learning%20to%20Manipulate%20Real%20Blankets%20Around%20People%20via%20Physics%20Simulations&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Puthuveetil,%20Kavya&rft.date=2022-04-01&rft.volume=7&rft.issue=2&rft.spage=1984&rft.epage=1991&rft.pages=1984-1991&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2022.3142732&rft_dat=%3Cproquest_RIE%3E2622829521%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2622829521&rft_id=info:pmid/&rft_ieee_id=9681203&rfr_iscdi=true