Bodies Uncovered: Learning to Manipulate Real Blankets Around People via Physics Simulations
While robots present an opportunity to provide physical assistance to older adults and people with mobility impairments in bed, people frequently rest in bed with blankets that cover the majority of their body. To provide assistance for many daily self-care tasks, such as bathing, dressing, or ambul...
Gespeichert in:
Veröffentlicht in: | IEEE robotics and automation letters 2022-04, Vol.7 (2), p.1984-1991 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1991 |
---|---|
container_issue | 2 |
container_start_page | 1984 |
container_title | IEEE robotics and automation letters |
container_volume | 7 |
creator | Puthuveetil, Kavya Kemp, Charles C. Erickson, Zackory |
description | While robots present an opportunity to provide physical assistance to older adults and people with mobility impairments in bed, people frequently rest in bed with blankets that cover the majority of their body. To provide assistance for many daily self-care tasks, such as bathing, dressing, or ambulating, a caregiver must first uncover blankets from part of a person's body. In this work, we introduce a formulation for robotic bedding manipulation around people in which a robot uncovers a blanket from a target body part while ensuring the rest of the human body remains covered. We compare two approaches for optimizing policies which provide a robot with grasp and release points that uncover a target part of the body: 1) reinforcement learning and 2) self-supervised learning with optimization to generate training data. We trained and conducted evaluations of these policies in physics simulation environments that consist of a deformable cloth mesh covering a simulated human lying supine on a bed. In addition, we transfer simulation-trained policies to a real mobile manipulator and demonstrate that it can uncover a blanket from target body parts of a manikin lying in bed. Source code is available online^{3}. |
doi_str_mv | 10.1109/LRA.2022.3142732 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9681203</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9681203</ieee_id><sourcerecordid>2622829521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-644ac2443fbe5015422f81c204b24f66e9faa69087fbaea64540d6ed6147e6ce3</originalsourceid><addsrcrecordid>eNpNkM9LwzAUx4MoOHR3wUvAc2fykqatt234CyqO6W5CydpXzeySmbSD_fd2bIin9w6f7_c9PoRccTbinGW3-Xw8AgYwElxCIuCEDEAkSSQSpU7_7edkGMKKMcbjHsviAfmYuMpgoAtbui16rO5ojtpbYz9p6-iLtmbTNbpFOkfd0Emj7Te2gY6962xFZ-g2DdKt0XT2tQumDPTNrPcB42y4JGe1bgIOj_OCLB7u36dPUf76-Dwd51EJGW8jJaUuQUpRLzHuX5MAdcpLYHIJslYKs1prlbE0qZcatZKxZJXCSnGZoCpRXJCbQ-_Gu58OQ1usXOdtf7IABZBCFgPvKXagSu9C8FgXG2_W2u8Kzoq9xqLXWOw1FkeNfeT6EDGI-IdnKuXAhPgFttBthg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2622829521</pqid></control><display><type>article</type><title>Bodies Uncovered: Learning to Manipulate Real Blankets Around People via Physics Simulations</title><source>IEEE Electronic Library (IEL)</source><creator>Puthuveetil, Kavya ; Kemp, Charles C. ; Erickson, Zackory</creator><creatorcontrib>Puthuveetil, Kavya ; Kemp, Charles C. ; Erickson, Zackory</creatorcontrib><description>While robots present an opportunity to provide physical assistance to older adults and people with mobility impairments in bed, people frequently rest in bed with blankets that cover the majority of their body. To provide assistance for many daily self-care tasks, such as bathing, dressing, or ambulating, a caregiver must first uncover blankets from part of a person's body. In this work, we introduce a formulation for robotic bedding manipulation around people in which a robot uncovers a blanket from a target body part while ensuring the rest of the human body remains covered. We compare two approaches for optimizing policies which provide a robot with grasp and release points that uncover a target part of the body: 1) reinforcement learning and 2) self-supervised learning with optimization to generate training data. We trained and conducted evaluations of these policies in physics simulation environments that consist of a deformable cloth mesh covering a simulated human lying supine on a bed. In addition, we transfer simulation-trained policies to a real mobile manipulator and demonstrate that it can uncover a blanket from target body parts of a manikin lying in bed. Source code is available online<inline-formula><tex-math notation="LaTeX">^{3}</tex-math></inline-formula>.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2022.3142732</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Bathing ; Body parts ; Deformable models ; Finite element method ; Formability ; Grasping (robotics) ; Machine learning ; Manipulators ; Optimization ; physical human-robot interaction ; Physically assistive devices ; Policies ; Reinforcement learning ; Robot sensing systems ; Robots ; Simulation ; simulation and animation ; Source code ; Task analysis ; Visualization</subject><ispartof>IEEE robotics and automation letters, 2022-04, Vol.7 (2), p.1984-1991</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-644ac2443fbe5015422f81c204b24f66e9faa69087fbaea64540d6ed6147e6ce3</citedby><cites>FETCH-LOGICAL-c291t-644ac2443fbe5015422f81c204b24f66e9faa69087fbaea64540d6ed6147e6ce3</cites><orcidid>0000-0003-4720-1136 ; 0000-0002-6760-6213 ; 0000-0003-2432-6577</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9681203$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9681203$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Puthuveetil, Kavya</creatorcontrib><creatorcontrib>Kemp, Charles C.</creatorcontrib><creatorcontrib>Erickson, Zackory</creatorcontrib><title>Bodies Uncovered: Learning to Manipulate Real Blankets Around People via Physics Simulations</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>While robots present an opportunity to provide physical assistance to older adults and people with mobility impairments in bed, people frequently rest in bed with blankets that cover the majority of their body. To provide assistance for many daily self-care tasks, such as bathing, dressing, or ambulating, a caregiver must first uncover blankets from part of a person's body. In this work, we introduce a formulation for robotic bedding manipulation around people in which a robot uncovers a blanket from a target body part while ensuring the rest of the human body remains covered. We compare two approaches for optimizing policies which provide a robot with grasp and release points that uncover a target part of the body: 1) reinforcement learning and 2) self-supervised learning with optimization to generate training data. We trained and conducted evaluations of these policies in physics simulation environments that consist of a deformable cloth mesh covering a simulated human lying supine on a bed. In addition, we transfer simulation-trained policies to a real mobile manipulator and demonstrate that it can uncover a blanket from target body parts of a manikin lying in bed. Source code is available online<inline-formula><tex-math notation="LaTeX">^{3}</tex-math></inline-formula>.</description><subject>Bathing</subject><subject>Body parts</subject><subject>Deformable models</subject><subject>Finite element method</subject><subject>Formability</subject><subject>Grasping (robotics)</subject><subject>Machine learning</subject><subject>Manipulators</subject><subject>Optimization</subject><subject>physical human-robot interaction</subject><subject>Physically assistive devices</subject><subject>Policies</subject><subject>Reinforcement learning</subject><subject>Robot sensing systems</subject><subject>Robots</subject><subject>Simulation</subject><subject>simulation and animation</subject><subject>Source code</subject><subject>Task analysis</subject><subject>Visualization</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM9LwzAUx4MoOHR3wUvAc2fykqatt234CyqO6W5CydpXzeySmbSD_fd2bIin9w6f7_c9PoRccTbinGW3-Xw8AgYwElxCIuCEDEAkSSQSpU7_7edkGMKKMcbjHsviAfmYuMpgoAtbui16rO5ojtpbYz9p6-iLtmbTNbpFOkfd0Emj7Te2gY6962xFZ-g2DdKt0XT2tQumDPTNrPcB42y4JGe1bgIOj_OCLB7u36dPUf76-Dwd51EJGW8jJaUuQUpRLzHuX5MAdcpLYHIJslYKs1prlbE0qZcatZKxZJXCSnGZoCpRXJCbQ-_Gu58OQ1usXOdtf7IABZBCFgPvKXagSu9C8FgXG2_W2u8Kzoq9xqLXWOw1FkeNfeT6EDGI-IdnKuXAhPgFttBthg</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Puthuveetil, Kavya</creator><creator>Kemp, Charles C.</creator><creator>Erickson, Zackory</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4720-1136</orcidid><orcidid>https://orcid.org/0000-0002-6760-6213</orcidid><orcidid>https://orcid.org/0000-0003-2432-6577</orcidid></search><sort><creationdate>20220401</creationdate><title>Bodies Uncovered: Learning to Manipulate Real Blankets Around People via Physics Simulations</title><author>Puthuveetil, Kavya ; Kemp, Charles C. ; Erickson, Zackory</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-644ac2443fbe5015422f81c204b24f66e9faa69087fbaea64540d6ed6147e6ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bathing</topic><topic>Body parts</topic><topic>Deformable models</topic><topic>Finite element method</topic><topic>Formability</topic><topic>Grasping (robotics)</topic><topic>Machine learning</topic><topic>Manipulators</topic><topic>Optimization</topic><topic>physical human-robot interaction</topic><topic>Physically assistive devices</topic><topic>Policies</topic><topic>Reinforcement learning</topic><topic>Robot sensing systems</topic><topic>Robots</topic><topic>Simulation</topic><topic>simulation and animation</topic><topic>Source code</topic><topic>Task analysis</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Puthuveetil, Kavya</creatorcontrib><creatorcontrib>Kemp, Charles C.</creatorcontrib><creatorcontrib>Erickson, Zackory</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Puthuveetil, Kavya</au><au>Kemp, Charles C.</au><au>Erickson, Zackory</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bodies Uncovered: Learning to Manipulate Real Blankets Around People via Physics Simulations</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>7</volume><issue>2</issue><spage>1984</spage><epage>1991</epage><pages>1984-1991</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>While robots present an opportunity to provide physical assistance to older adults and people with mobility impairments in bed, people frequently rest in bed with blankets that cover the majority of their body. To provide assistance for many daily self-care tasks, such as bathing, dressing, or ambulating, a caregiver must first uncover blankets from part of a person's body. In this work, we introduce a formulation for robotic bedding manipulation around people in which a robot uncovers a blanket from a target body part while ensuring the rest of the human body remains covered. We compare two approaches for optimizing policies which provide a robot with grasp and release points that uncover a target part of the body: 1) reinforcement learning and 2) self-supervised learning with optimization to generate training data. We trained and conducted evaluations of these policies in physics simulation environments that consist of a deformable cloth mesh covering a simulated human lying supine on a bed. In addition, we transfer simulation-trained policies to a real mobile manipulator and demonstrate that it can uncover a blanket from target body parts of a manikin lying in bed. Source code is available online<inline-formula><tex-math notation="LaTeX">^{3}</tex-math></inline-formula>.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2022.3142732</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-4720-1136</orcidid><orcidid>https://orcid.org/0000-0002-6760-6213</orcidid><orcidid>https://orcid.org/0000-0003-2432-6577</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2377-3766 |
ispartof | IEEE robotics and automation letters, 2022-04, Vol.7 (2), p.1984-1991 |
issn | 2377-3766 2377-3766 |
language | eng |
recordid | cdi_ieee_primary_9681203 |
source | IEEE Electronic Library (IEL) |
subjects | Bathing Body parts Deformable models Finite element method Formability Grasping (robotics) Machine learning Manipulators Optimization physical human-robot interaction Physically assistive devices Policies Reinforcement learning Robot sensing systems Robots Simulation simulation and animation Source code Task analysis Visualization |
title | Bodies Uncovered: Learning to Manipulate Real Blankets Around People via Physics Simulations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T05%3A01%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bodies%20Uncovered:%20Learning%20to%20Manipulate%20Real%20Blankets%20Around%20People%20via%20Physics%20Simulations&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Puthuveetil,%20Kavya&rft.date=2022-04-01&rft.volume=7&rft.issue=2&rft.spage=1984&rft.epage=1991&rft.pages=1984-1991&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2022.3142732&rft_dat=%3Cproquest_RIE%3E2622829521%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2622829521&rft_id=info:pmid/&rft_ieee_id=9681203&rfr_iscdi=true |