Leveraging 3-D Printer With 2.8-W Blue Laser Diode to Form Laser-Induced Graphene for Microfluidic Fuel Cell and Electrochemical Sensor

Realization of laser-induced graphene (LIG) by ablating laser on several substrates, like polyamide (PI), has gained huge attention. Generally, a CO 2 laser, with a 10.6- \mu \text{m} wavelength, has been reported to form LIG. However, higher build area, the requirement of a higher power, limited L...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2022-03, Vol.69 (3), p.1333-1340
Hauptverfasser: Kothuru, Avinash, Goel, Sanket
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1340
container_issue 3
container_start_page 1333
container_title IEEE transactions on electron devices
container_volume 69
creator Kothuru, Avinash
Goel, Sanket
description Realization of laser-induced graphene (LIG) by ablating laser on several substrates, like polyamide (PI), has gained huge attention. Generally, a CO 2 laser, with a 10.6- \mu \text{m} wavelength, has been reported to form LIG. However, higher build area, the requirement of a higher power, limited LIG conductivity values, infrared wavelength, and cost are several drawbacks of the CO 2 laser-based process. Herein, a 3-D printer, loaded with a low-power (2.8 W) blue (450 nm) laser diode, has been demonstrated to create such LIGs with higher conductivity on PI sheets. The LIGs, with varying conductivity values, have been fabricated by diversified laser parameters achieving maximum conductivity of 2572.19 S/m, which was more than seven times higher than the one achieved by a CO 2 laser. Subsequently, such LIG was transferred to a lamination sheet, named T-LIG, using a laminator. Finally, T-LIG based microfluidic device was developed with a microchannel and three integrated electrodes for electrochemical detection of folic acid, achieving a limit of detection of 10 ~\mu \text{M} . Similarly, a microfluidic fuel cell was developed using T-LIG which provided a maximum power density of 5.06 ~\mu \text{W} / cm 2 with a maximum open-circuit voltage of 50 mV. Overall, such T-LIG-based microfluidic devices have huge potential for diverse applications.
doi_str_mv 10.1109/TED.2022.3140707
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9680784</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9680784</ieee_id><sourcerecordid>2635045392</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-84f18886e53003af3a03e1065855df289dcf5924f481c27ea83f6ea0a00081c03</originalsourceid><addsrcrecordid>eNo9kM1Lw0AQxRdRsFbvgpcFz6mzX8nmqP2yUFGw0mNYNrPtljRbN4ngX-C_bUrF0zCP92Z4P0JuGYwYg_xhNZ2MOHA-EkxCBtkZGTClsiRPZXpOBgBMJ7nQ4pJcNc2uX1Mp-YD8LPELo9n4ekNFMqFv0dctRrr27ZbykU7W9KnqkC5N06sTH0qkbaCzEPcnLVnUZWexpPNoDluskboQ6Yu3Mbiq86W3dNZhRcdYVdTUJZ1WaNsY7Bb33pqKvmPdhHhNLpypGrz5m0PyMZuuxs_J8nW-GD8uE8tz1iZaOqa1TlEJAGGcMCCQQaq0UqXjOi-tUzmXTmpmeYZGC5eiAQMAvQJiSO5Pdw8xfHbYtMUudLHuXxY8FQqkEjnvXXBy9S2aJqIrDtHvTfwuGBRH3EWPuzjiLv5w95G7U8Qj4r89TzVkWopfP7d5mQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2635045392</pqid></control><display><type>article</type><title>Leveraging 3-D Printer With 2.8-W Blue Laser Diode to Form Laser-Induced Graphene for Microfluidic Fuel Cell and Electrochemical Sensor</title><source>IEEE Electronic Library (IEL)</source><creator>Kothuru, Avinash ; Goel, Sanket</creator><creatorcontrib>Kothuru, Avinash ; Goel, Sanket</creatorcontrib><description><![CDATA[Realization of laser-induced graphene (LIG) by ablating laser on several substrates, like polyamide (PI), has gained huge attention. Generally, a CO 2 laser, with a 10.6-<inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula> wavelength, has been reported to form LIG. However, higher build area, the requirement of a higher power, limited LIG conductivity values, infrared wavelength, and cost are several drawbacks of the CO 2 laser-based process. Herein, a 3-D printer, loaded with a low-power (2.8 W) blue (450 nm) laser diode, has been demonstrated to create such LIGs with higher conductivity on PI sheets. The LIGs, with varying conductivity values, have been fabricated by diversified laser parameters achieving maximum conductivity of 2572.19 S/m, which was more than seven times higher than the one achieved by a CO 2 laser. Subsequently, such LIG was transferred to a lamination sheet, named T-LIG, using a laminator. Finally, T-LIG based microfluidic device was developed with a microchannel and three integrated electrodes for electrochemical detection of folic acid, achieving a limit of detection of <inline-formula> <tex-math notation="LaTeX">10 ~\mu \text{M} </tex-math></inline-formula>. Similarly, a microfluidic fuel cell was developed using T-LIG which provided a maximum power density of <inline-formula> <tex-math notation="LaTeX">5.06 ~\mu \text{W} </tex-math></inline-formula>/ cm 2 with a maximum open-circuit voltage of 50 mV. Overall, such T-LIG-based microfluidic devices have huge potential for diverse applications.]]></description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2022.3140707</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>3-D printers ; Ablation ; Carbon dioxide ; Carbon dioxide lasers ; Chemical sensors ; Conductivity ; contact angle ; Diode lasers ; Electrochemical analysis ; Folic acid ; folic acid (FA) ; fuel cell ; Fuel cells ; Graphene ; Lamination ; Laser ablation ; Laser applications ; laser-induced graphene (LIG) ; Lasers ; Maximum power density ; Microchannels ; Microfluidic devices ; Open circuit voltage ; Polyamide resins ; Polyimides ; Power management ; Printers ; Semiconductor lasers ; Substrates ; Three dimensional printing ; transferred LIG</subject><ispartof>IEEE transactions on electron devices, 2022-03, Vol.69 (3), p.1333-1340</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-84f18886e53003af3a03e1065855df289dcf5924f481c27ea83f6ea0a00081c03</citedby><cites>FETCH-LOGICAL-c291t-84f18886e53003af3a03e1065855df289dcf5924f481c27ea83f6ea0a00081c03</cites><orcidid>0000-0002-9739-4178</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9680784$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9680784$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kothuru, Avinash</creatorcontrib><creatorcontrib>Goel, Sanket</creatorcontrib><title>Leveraging 3-D Printer With 2.8-W Blue Laser Diode to Form Laser-Induced Graphene for Microfluidic Fuel Cell and Electrochemical Sensor</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description><![CDATA[Realization of laser-induced graphene (LIG) by ablating laser on several substrates, like polyamide (PI), has gained huge attention. Generally, a CO 2 laser, with a 10.6-<inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula> wavelength, has been reported to form LIG. However, higher build area, the requirement of a higher power, limited LIG conductivity values, infrared wavelength, and cost are several drawbacks of the CO 2 laser-based process. Herein, a 3-D printer, loaded with a low-power (2.8 W) blue (450 nm) laser diode, has been demonstrated to create such LIGs with higher conductivity on PI sheets. The LIGs, with varying conductivity values, have been fabricated by diversified laser parameters achieving maximum conductivity of 2572.19 S/m, which was more than seven times higher than the one achieved by a CO 2 laser. Subsequently, such LIG was transferred to a lamination sheet, named T-LIG, using a laminator. Finally, T-LIG based microfluidic device was developed with a microchannel and three integrated electrodes for electrochemical detection of folic acid, achieving a limit of detection of <inline-formula> <tex-math notation="LaTeX">10 ~\mu \text{M} </tex-math></inline-formula>. Similarly, a microfluidic fuel cell was developed using T-LIG which provided a maximum power density of <inline-formula> <tex-math notation="LaTeX">5.06 ~\mu \text{W} </tex-math></inline-formula>/ cm 2 with a maximum open-circuit voltage of 50 mV. Overall, such T-LIG-based microfluidic devices have huge potential for diverse applications.]]></description><subject>3-D printers</subject><subject>Ablation</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide lasers</subject><subject>Chemical sensors</subject><subject>Conductivity</subject><subject>contact angle</subject><subject>Diode lasers</subject><subject>Electrochemical analysis</subject><subject>Folic acid</subject><subject>folic acid (FA)</subject><subject>fuel cell</subject><subject>Fuel cells</subject><subject>Graphene</subject><subject>Lamination</subject><subject>Laser ablation</subject><subject>Laser applications</subject><subject>laser-induced graphene (LIG)</subject><subject>Lasers</subject><subject>Maximum power density</subject><subject>Microchannels</subject><subject>Microfluidic devices</subject><subject>Open circuit voltage</subject><subject>Polyamide resins</subject><subject>Polyimides</subject><subject>Power management</subject><subject>Printers</subject><subject>Semiconductor lasers</subject><subject>Substrates</subject><subject>Three dimensional printing</subject><subject>transferred LIG</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1Lw0AQxRdRsFbvgpcFz6mzX8nmqP2yUFGw0mNYNrPtljRbN4ngX-C_bUrF0zCP92Z4P0JuGYwYg_xhNZ2MOHA-EkxCBtkZGTClsiRPZXpOBgBMJ7nQ4pJcNc2uX1Mp-YD8LPELo9n4ekNFMqFv0dctRrr27ZbykU7W9KnqkC5N06sTH0qkbaCzEPcnLVnUZWexpPNoDluskboQ6Yu3Mbiq86W3dNZhRcdYVdTUJZ1WaNsY7Bb33pqKvmPdhHhNLpypGrz5m0PyMZuuxs_J8nW-GD8uE8tz1iZaOqa1TlEJAGGcMCCQQaq0UqXjOi-tUzmXTmpmeYZGC5eiAQMAvQJiSO5Pdw8xfHbYtMUudLHuXxY8FQqkEjnvXXBy9S2aJqIrDtHvTfwuGBRH3EWPuzjiLv5w95G7U8Qj4r89TzVkWopfP7d5mQ</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Kothuru, Avinash</creator><creator>Goel, Sanket</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9739-4178</orcidid></search><sort><creationdate>20220301</creationdate><title>Leveraging 3-D Printer With 2.8-W Blue Laser Diode to Form Laser-Induced Graphene for Microfluidic Fuel Cell and Electrochemical Sensor</title><author>Kothuru, Avinash ; Goel, Sanket</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-84f18886e53003af3a03e1065855df289dcf5924f481c27ea83f6ea0a00081c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>3-D printers</topic><topic>Ablation</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide lasers</topic><topic>Chemical sensors</topic><topic>Conductivity</topic><topic>contact angle</topic><topic>Diode lasers</topic><topic>Electrochemical analysis</topic><topic>Folic acid</topic><topic>folic acid (FA)</topic><topic>fuel cell</topic><topic>Fuel cells</topic><topic>Graphene</topic><topic>Lamination</topic><topic>Laser ablation</topic><topic>Laser applications</topic><topic>laser-induced graphene (LIG)</topic><topic>Lasers</topic><topic>Maximum power density</topic><topic>Microchannels</topic><topic>Microfluidic devices</topic><topic>Open circuit voltage</topic><topic>Polyamide resins</topic><topic>Polyimides</topic><topic>Power management</topic><topic>Printers</topic><topic>Semiconductor lasers</topic><topic>Substrates</topic><topic>Three dimensional printing</topic><topic>transferred LIG</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kothuru, Avinash</creatorcontrib><creatorcontrib>Goel, Sanket</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kothuru, Avinash</au><au>Goel, Sanket</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Leveraging 3-D Printer With 2.8-W Blue Laser Diode to Form Laser-Induced Graphene for Microfluidic Fuel Cell and Electrochemical Sensor</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>69</volume><issue>3</issue><spage>1333</spage><epage>1340</epage><pages>1333-1340</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract><![CDATA[Realization of laser-induced graphene (LIG) by ablating laser on several substrates, like polyamide (PI), has gained huge attention. Generally, a CO 2 laser, with a 10.6-<inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula> wavelength, has been reported to form LIG. However, higher build area, the requirement of a higher power, limited LIG conductivity values, infrared wavelength, and cost are several drawbacks of the CO 2 laser-based process. Herein, a 3-D printer, loaded with a low-power (2.8 W) blue (450 nm) laser diode, has been demonstrated to create such LIGs with higher conductivity on PI sheets. The LIGs, with varying conductivity values, have been fabricated by diversified laser parameters achieving maximum conductivity of 2572.19 S/m, which was more than seven times higher than the one achieved by a CO 2 laser. Subsequently, such LIG was transferred to a lamination sheet, named T-LIG, using a laminator. Finally, T-LIG based microfluidic device was developed with a microchannel and three integrated electrodes for electrochemical detection of folic acid, achieving a limit of detection of <inline-formula> <tex-math notation="LaTeX">10 ~\mu \text{M} </tex-math></inline-formula>. Similarly, a microfluidic fuel cell was developed using T-LIG which provided a maximum power density of <inline-formula> <tex-math notation="LaTeX">5.06 ~\mu \text{W} </tex-math></inline-formula>/ cm 2 with a maximum open-circuit voltage of 50 mV. Overall, such T-LIG-based microfluidic devices have huge potential for diverse applications.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2022.3140707</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9739-4178</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2022-03, Vol.69 (3), p.1333-1340
issn 0018-9383
1557-9646
language eng
recordid cdi_ieee_primary_9680784
source IEEE Electronic Library (IEL)
subjects 3-D printers
Ablation
Carbon dioxide
Carbon dioxide lasers
Chemical sensors
Conductivity
contact angle
Diode lasers
Electrochemical analysis
Folic acid
folic acid (FA)
fuel cell
Fuel cells
Graphene
Lamination
Laser ablation
Laser applications
laser-induced graphene (LIG)
Lasers
Maximum power density
Microchannels
Microfluidic devices
Open circuit voltage
Polyamide resins
Polyimides
Power management
Printers
Semiconductor lasers
Substrates
Three dimensional printing
transferred LIG
title Leveraging 3-D Printer With 2.8-W Blue Laser Diode to Form Laser-Induced Graphene for Microfluidic Fuel Cell and Electrochemical Sensor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A06%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Leveraging%203-D%20Printer%20With%202.8-W%20Blue%20Laser%20Diode%20to%20Form%20Laser-Induced%20Graphene%20for%20Microfluidic%20Fuel%20Cell%20and%20Electrochemical%20Sensor&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Kothuru,%20Avinash&rft.date=2022-03-01&rft.volume=69&rft.issue=3&rft.spage=1333&rft.epage=1340&rft.pages=1333-1340&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2022.3140707&rft_dat=%3Cproquest_RIE%3E2635045392%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2635045392&rft_id=info:pmid/&rft_ieee_id=9680784&rfr_iscdi=true