Incipient Residual-Based Anomaly Detection in Power Electronic Devices
Power electronics (PE) and high-frequency switching circuits are key to superior performance of electric vehicles. It is vital to monitor the condition of the PE components in real-time for safety and reliability. In this article, we propose two anomaly detection methods based on a combination of da...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power electronics 2022-06, Vol.37 (6), p.7315-7332 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7332 |
---|---|
container_issue | 6 |
container_start_page | 7315 |
container_title | IEEE transactions on power electronics |
container_volume | 37 |
creator | Yang, Qian Gultekin, Muhammed A. Seferian, Vahe Pattipati, Krishna Bazzi, Ali M. Palmieri, Francesco A. N. Rajamani, Ravi Joshi, Shailesh Farooq, Muhamed Ukegawa, Hiroshi |
description | Power electronics (PE) and high-frequency switching circuits are key to superior performance of electric vehicles. It is vital to monitor the condition of the PE components in real-time for safety and reliability. In this article, we propose two anomaly detection methods based on a combination of data preprocessing to suppress noise and outliers, multivariate regression models to predict signals of interest under nominal operation, and sequential analysis of residuals. In particular, the methods utilize median filtering to extract on -state medians in each switching cycle in nonlinear autoregressive exogenous neural network models or filtered on -state data in partial least squares-based models to represent the nominal circuit behavior. Optimal and approximate dynamic programming-based feature selection methods are developed to select the most informative signals or their transformations. Predictions from the learned models are used to generate the residuals for anomaly detection by Page's cumulative sum test. The proposed models and anomaly detection methods are validated on three accelerated aging experimental datasets, comprised of 60 power mosfet devices with low-frequency and high-frequency switching under disparate operating conditions. Due to the simplicity and efficiency of the data-driven anomaly detection schemes, the proposed methods can potentially be embedded in real-time digital platforms. |
doi_str_mv | 10.1109/TPEL.2022.3140721 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9674845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9674845</ieee_id><sourcerecordid>2629127720</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-7b6fbf71797e15dc981373f7faa52398a1a1e34f4fddccf3997a6ea92ed39a9f3</originalsourceid><addsrcrecordid>eNo9kFFLwzAQx4MoOKcfQHwp-NyZS9qm9zjnpoOBQ-ZzyNILZHTtTDpl334dGz4d_O_3v4MfY4_ARwAcX1bL6WIkuBAjCRlXAq7YADCDlANX12zAyzJPS0R5y-5i3HAOWc5hwGbzxvqdp6ZLvij6am_q9NVEqpJx025NfUjeqCPb-bZJfJMs2z8KybTuk9A23vbbX28p3rMbZ-pID5c5ZN-z6WrykS4-3-eT8SK1AmWXqnXh1k6BQkWQVxZLkEo65YzJhcTSgAGSmctcVVnrJKIyBRkUVEk06OSQPZ_v7kL7s6fY6U27D03_UotCIAilBO8pOFM2tDEGcnoX_NaEgwauT7r0SZc-6dIXXX3n6dzxRPTPY6GyMsvlEXQ0Zkc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2629127720</pqid></control><display><type>article</type><title>Incipient Residual-Based Anomaly Detection in Power Electronic Devices</title><source>IEEE Electronic Library (IEL)</source><creator>Yang, Qian ; Gultekin, Muhammed A. ; Seferian, Vahe ; Pattipati, Krishna ; Bazzi, Ali M. ; Palmieri, Francesco A. N. ; Rajamani, Ravi ; Joshi, Shailesh ; Farooq, Muhamed ; Ukegawa, Hiroshi</creator><creatorcontrib>Yang, Qian ; Gultekin, Muhammed A. ; Seferian, Vahe ; Pattipati, Krishna ; Bazzi, Ali M. ; Palmieri, Francesco A. N. ; Rajamani, Ravi ; Joshi, Shailesh ; Farooq, Muhamed ; Ukegawa, Hiroshi</creatorcontrib><description>Power electronics (PE) and high-frequency switching circuits are key to superior performance of electric vehicles. It is vital to monitor the condition of the PE components in real-time for safety and reliability. In this article, we propose two anomaly detection methods based on a combination of data preprocessing to suppress noise and outliers, multivariate regression models to predict signals of interest under nominal operation, and sequential analysis of residuals. In particular, the methods utilize median filtering to extract on -state medians in each switching cycle in nonlinear autoregressive exogenous neural network models or filtered on -state data in partial least squares-based models to represent the nominal circuit behavior. Optimal and approximate dynamic programming-based feature selection methods are developed to select the most informative signals or their transformations. Predictions from the learned models are used to generate the residuals for anomaly detection by Page's cumulative sum test. The proposed models and anomaly detection methods are validated on three accelerated aging experimental datasets, comprised of 60 power mosfet devices with low-frequency and high-frequency switching under disparate operating conditions. Due to the simplicity and efficiency of the data-driven anomaly detection schemes, the proposed methods can potentially be embedded in real-time digital platforms.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2022.3140721</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Anomalies ; Anomaly detection ; Autoregressive models ; Component reliability ; Cumulative sum (CUSUM) test ; Data models ; Dynamic programming ; Electric vehicles ; Electronic devices ; Feature extraction ; Hidden Markov models ; Monitoring ; MOSFET ; Neural networks ; nonlinear autoregressive exogenous (NARX) ; online anomaly detection ; Outliers (statistics) ; partial least squares (PLS) ; power electronics (PE) ; Real time ; Regression models ; Reliability aspects ; Sequential analysis ; Switching circuits ; Temperature measurement</subject><ispartof>IEEE transactions on power electronics, 2022-06, Vol.37 (6), p.7315-7332</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-7b6fbf71797e15dc981373f7faa52398a1a1e34f4fddccf3997a6ea92ed39a9f3</citedby><cites>FETCH-LOGICAL-c293t-7b6fbf71797e15dc981373f7faa52398a1a1e34f4fddccf3997a6ea92ed39a9f3</cites><orcidid>0000-0002-3933-1697 ; 0000-0003-3777-3501 ; 0000-0001-7218-1187 ; 0000-0002-9870-1133 ; 0000-0002-0565-181X ; 0000-0001-5492-723X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9674845$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9674845$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yang, Qian</creatorcontrib><creatorcontrib>Gultekin, Muhammed A.</creatorcontrib><creatorcontrib>Seferian, Vahe</creatorcontrib><creatorcontrib>Pattipati, Krishna</creatorcontrib><creatorcontrib>Bazzi, Ali M.</creatorcontrib><creatorcontrib>Palmieri, Francesco A. N.</creatorcontrib><creatorcontrib>Rajamani, Ravi</creatorcontrib><creatorcontrib>Joshi, Shailesh</creatorcontrib><creatorcontrib>Farooq, Muhamed</creatorcontrib><creatorcontrib>Ukegawa, Hiroshi</creatorcontrib><title>Incipient Residual-Based Anomaly Detection in Power Electronic Devices</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>Power electronics (PE) and high-frequency switching circuits are key to superior performance of electric vehicles. It is vital to monitor the condition of the PE components in real-time for safety and reliability. In this article, we propose two anomaly detection methods based on a combination of data preprocessing to suppress noise and outliers, multivariate regression models to predict signals of interest under nominal operation, and sequential analysis of residuals. In particular, the methods utilize median filtering to extract on -state medians in each switching cycle in nonlinear autoregressive exogenous neural network models or filtered on -state data in partial least squares-based models to represent the nominal circuit behavior. Optimal and approximate dynamic programming-based feature selection methods are developed to select the most informative signals or their transformations. Predictions from the learned models are used to generate the residuals for anomaly detection by Page's cumulative sum test. The proposed models and anomaly detection methods are validated on three accelerated aging experimental datasets, comprised of 60 power mosfet devices with low-frequency and high-frequency switching under disparate operating conditions. Due to the simplicity and efficiency of the data-driven anomaly detection schemes, the proposed methods can potentially be embedded in real-time digital platforms.</description><subject>Anomalies</subject><subject>Anomaly detection</subject><subject>Autoregressive models</subject><subject>Component reliability</subject><subject>Cumulative sum (CUSUM) test</subject><subject>Data models</subject><subject>Dynamic programming</subject><subject>Electric vehicles</subject><subject>Electronic devices</subject><subject>Feature extraction</subject><subject>Hidden Markov models</subject><subject>Monitoring</subject><subject>MOSFET</subject><subject>Neural networks</subject><subject>nonlinear autoregressive exogenous (NARX)</subject><subject>online anomaly detection</subject><subject>Outliers (statistics)</subject><subject>partial least squares (PLS)</subject><subject>power electronics (PE)</subject><subject>Real time</subject><subject>Regression models</subject><subject>Reliability aspects</subject><subject>Sequential analysis</subject><subject>Switching circuits</subject><subject>Temperature measurement</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFLwzAQx4MoOKcfQHwp-NyZS9qm9zjnpoOBQ-ZzyNILZHTtTDpl334dGz4d_O_3v4MfY4_ARwAcX1bL6WIkuBAjCRlXAq7YADCDlANX12zAyzJPS0R5y-5i3HAOWc5hwGbzxvqdp6ZLvij6am_q9NVEqpJx025NfUjeqCPb-bZJfJMs2z8KybTuk9A23vbbX28p3rMbZ-pID5c5ZN-z6WrykS4-3-eT8SK1AmWXqnXh1k6BQkWQVxZLkEo65YzJhcTSgAGSmctcVVnrJKIyBRkUVEk06OSQPZ_v7kL7s6fY6U27D03_UotCIAilBO8pOFM2tDEGcnoX_NaEgwauT7r0SZc-6dIXXX3n6dzxRPTPY6GyMsvlEXQ0Zkc</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Yang, Qian</creator><creator>Gultekin, Muhammed A.</creator><creator>Seferian, Vahe</creator><creator>Pattipati, Krishna</creator><creator>Bazzi, Ali M.</creator><creator>Palmieri, Francesco A. N.</creator><creator>Rajamani, Ravi</creator><creator>Joshi, Shailesh</creator><creator>Farooq, Muhamed</creator><creator>Ukegawa, Hiroshi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3933-1697</orcidid><orcidid>https://orcid.org/0000-0003-3777-3501</orcidid><orcidid>https://orcid.org/0000-0001-7218-1187</orcidid><orcidid>https://orcid.org/0000-0002-9870-1133</orcidid><orcidid>https://orcid.org/0000-0002-0565-181X</orcidid><orcidid>https://orcid.org/0000-0001-5492-723X</orcidid></search><sort><creationdate>20220601</creationdate><title>Incipient Residual-Based Anomaly Detection in Power Electronic Devices</title><author>Yang, Qian ; Gultekin, Muhammed A. ; Seferian, Vahe ; Pattipati, Krishna ; Bazzi, Ali M. ; Palmieri, Francesco A. N. ; Rajamani, Ravi ; Joshi, Shailesh ; Farooq, Muhamed ; Ukegawa, Hiroshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-7b6fbf71797e15dc981373f7faa52398a1a1e34f4fddccf3997a6ea92ed39a9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anomalies</topic><topic>Anomaly detection</topic><topic>Autoregressive models</topic><topic>Component reliability</topic><topic>Cumulative sum (CUSUM) test</topic><topic>Data models</topic><topic>Dynamic programming</topic><topic>Electric vehicles</topic><topic>Electronic devices</topic><topic>Feature extraction</topic><topic>Hidden Markov models</topic><topic>Monitoring</topic><topic>MOSFET</topic><topic>Neural networks</topic><topic>nonlinear autoregressive exogenous (NARX)</topic><topic>online anomaly detection</topic><topic>Outliers (statistics)</topic><topic>partial least squares (PLS)</topic><topic>power electronics (PE)</topic><topic>Real time</topic><topic>Regression models</topic><topic>Reliability aspects</topic><topic>Sequential analysis</topic><topic>Switching circuits</topic><topic>Temperature measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Qian</creatorcontrib><creatorcontrib>Gultekin, Muhammed A.</creatorcontrib><creatorcontrib>Seferian, Vahe</creatorcontrib><creatorcontrib>Pattipati, Krishna</creatorcontrib><creatorcontrib>Bazzi, Ali M.</creatorcontrib><creatorcontrib>Palmieri, Francesco A. N.</creatorcontrib><creatorcontrib>Rajamani, Ravi</creatorcontrib><creatorcontrib>Joshi, Shailesh</creatorcontrib><creatorcontrib>Farooq, Muhamed</creatorcontrib><creatorcontrib>Ukegawa, Hiroshi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yang, Qian</au><au>Gultekin, Muhammed A.</au><au>Seferian, Vahe</au><au>Pattipati, Krishna</au><au>Bazzi, Ali M.</au><au>Palmieri, Francesco A. N.</au><au>Rajamani, Ravi</au><au>Joshi, Shailesh</au><au>Farooq, Muhamed</au><au>Ukegawa, Hiroshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Incipient Residual-Based Anomaly Detection in Power Electronic Devices</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>37</volume><issue>6</issue><spage>7315</spage><epage>7332</epage><pages>7315-7332</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>Power electronics (PE) and high-frequency switching circuits are key to superior performance of electric vehicles. It is vital to monitor the condition of the PE components in real-time for safety and reliability. In this article, we propose two anomaly detection methods based on a combination of data preprocessing to suppress noise and outliers, multivariate regression models to predict signals of interest under nominal operation, and sequential analysis of residuals. In particular, the methods utilize median filtering to extract on -state medians in each switching cycle in nonlinear autoregressive exogenous neural network models or filtered on -state data in partial least squares-based models to represent the nominal circuit behavior. Optimal and approximate dynamic programming-based feature selection methods are developed to select the most informative signals or their transformations. Predictions from the learned models are used to generate the residuals for anomaly detection by Page's cumulative sum test. The proposed models and anomaly detection methods are validated on three accelerated aging experimental datasets, comprised of 60 power mosfet devices with low-frequency and high-frequency switching under disparate operating conditions. Due to the simplicity and efficiency of the data-driven anomaly detection schemes, the proposed methods can potentially be embedded in real-time digital platforms.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2022.3140721</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-3933-1697</orcidid><orcidid>https://orcid.org/0000-0003-3777-3501</orcidid><orcidid>https://orcid.org/0000-0001-7218-1187</orcidid><orcidid>https://orcid.org/0000-0002-9870-1133</orcidid><orcidid>https://orcid.org/0000-0002-0565-181X</orcidid><orcidid>https://orcid.org/0000-0001-5492-723X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-8993 |
ispartof | IEEE transactions on power electronics, 2022-06, Vol.37 (6), p.7315-7332 |
issn | 0885-8993 1941-0107 |
language | eng |
recordid | cdi_ieee_primary_9674845 |
source | IEEE Electronic Library (IEL) |
subjects | Anomalies Anomaly detection Autoregressive models Component reliability Cumulative sum (CUSUM) test Data models Dynamic programming Electric vehicles Electronic devices Feature extraction Hidden Markov models Monitoring MOSFET Neural networks nonlinear autoregressive exogenous (NARX) online anomaly detection Outliers (statistics) partial least squares (PLS) power electronics (PE) Real time Regression models Reliability aspects Sequential analysis Switching circuits Temperature measurement |
title | Incipient Residual-Based Anomaly Detection in Power Electronic Devices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A52%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Incipient%20Residual-Based%20Anomaly%20Detection%20in%20Power%20Electronic%20Devices&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Yang,%20Qian&rft.date=2022-06-01&rft.volume=37&rft.issue=6&rft.spage=7315&rft.epage=7332&rft.pages=7315-7332&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2022.3140721&rft_dat=%3Cproquest_RIE%3E2629127720%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2629127720&rft_id=info:pmid/&rft_ieee_id=9674845&rfr_iscdi=true |