Incipient Residual-Based Anomaly Detection in Power Electronic Devices

Power electronics (PE) and high-frequency switching circuits are key to superior performance of electric vehicles. It is vital to monitor the condition of the PE components in real-time for safety and reliability. In this article, we propose two anomaly detection methods based on a combination of da...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power electronics 2022-06, Vol.37 (6), p.7315-7332
Hauptverfasser: Yang, Qian, Gultekin, Muhammed A., Seferian, Vahe, Pattipati, Krishna, Bazzi, Ali M., Palmieri, Francesco A. N., Rajamani, Ravi, Joshi, Shailesh, Farooq, Muhamed, Ukegawa, Hiroshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7332
container_issue 6
container_start_page 7315
container_title IEEE transactions on power electronics
container_volume 37
creator Yang, Qian
Gultekin, Muhammed A.
Seferian, Vahe
Pattipati, Krishna
Bazzi, Ali M.
Palmieri, Francesco A. N.
Rajamani, Ravi
Joshi, Shailesh
Farooq, Muhamed
Ukegawa, Hiroshi
description Power electronics (PE) and high-frequency switching circuits are key to superior performance of electric vehicles. It is vital to monitor the condition of the PE components in real-time for safety and reliability. In this article, we propose two anomaly detection methods based on a combination of data preprocessing to suppress noise and outliers, multivariate regression models to predict signals of interest under nominal operation, and sequential analysis of residuals. In particular, the methods utilize median filtering to extract on -state medians in each switching cycle in nonlinear autoregressive exogenous neural network models or filtered on -state data in partial least squares-based models to represent the nominal circuit behavior. Optimal and approximate dynamic programming-based feature selection methods are developed to select the most informative signals or their transformations. Predictions from the learned models are used to generate the residuals for anomaly detection by Page's cumulative sum test. The proposed models and anomaly detection methods are validated on three accelerated aging experimental datasets, comprised of 60 power mosfet devices with low-frequency and high-frequency switching under disparate operating conditions. Due to the simplicity and efficiency of the data-driven anomaly detection schemes, the proposed methods can potentially be embedded in real-time digital platforms.
doi_str_mv 10.1109/TPEL.2022.3140721
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9674845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9674845</ieee_id><sourcerecordid>2629127720</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-7b6fbf71797e15dc981373f7faa52398a1a1e34f4fddccf3997a6ea92ed39a9f3</originalsourceid><addsrcrecordid>eNo9kFFLwzAQx4MoOKcfQHwp-NyZS9qm9zjnpoOBQ-ZzyNILZHTtTDpl334dGz4d_O_3v4MfY4_ARwAcX1bL6WIkuBAjCRlXAq7YADCDlANX12zAyzJPS0R5y-5i3HAOWc5hwGbzxvqdp6ZLvij6am_q9NVEqpJx025NfUjeqCPb-bZJfJMs2z8KybTuk9A23vbbX28p3rMbZ-pID5c5ZN-z6WrykS4-3-eT8SK1AmWXqnXh1k6BQkWQVxZLkEo65YzJhcTSgAGSmctcVVnrJKIyBRkUVEk06OSQPZ_v7kL7s6fY6U27D03_UotCIAilBO8pOFM2tDEGcnoX_NaEgwauT7r0SZc-6dIXXX3n6dzxRPTPY6GyMsvlEXQ0Zkc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2629127720</pqid></control><display><type>article</type><title>Incipient Residual-Based Anomaly Detection in Power Electronic Devices</title><source>IEEE Electronic Library (IEL)</source><creator>Yang, Qian ; Gultekin, Muhammed A. ; Seferian, Vahe ; Pattipati, Krishna ; Bazzi, Ali M. ; Palmieri, Francesco A. N. ; Rajamani, Ravi ; Joshi, Shailesh ; Farooq, Muhamed ; Ukegawa, Hiroshi</creator><creatorcontrib>Yang, Qian ; Gultekin, Muhammed A. ; Seferian, Vahe ; Pattipati, Krishna ; Bazzi, Ali M. ; Palmieri, Francesco A. N. ; Rajamani, Ravi ; Joshi, Shailesh ; Farooq, Muhamed ; Ukegawa, Hiroshi</creatorcontrib><description>Power electronics (PE) and high-frequency switching circuits are key to superior performance of electric vehicles. It is vital to monitor the condition of the PE components in real-time for safety and reliability. In this article, we propose two anomaly detection methods based on a combination of data preprocessing to suppress noise and outliers, multivariate regression models to predict signals of interest under nominal operation, and sequential analysis of residuals. In particular, the methods utilize median filtering to extract on -state medians in each switching cycle in nonlinear autoregressive exogenous neural network models or filtered on -state data in partial least squares-based models to represent the nominal circuit behavior. Optimal and approximate dynamic programming-based feature selection methods are developed to select the most informative signals or their transformations. Predictions from the learned models are used to generate the residuals for anomaly detection by Page's cumulative sum test. The proposed models and anomaly detection methods are validated on three accelerated aging experimental datasets, comprised of 60 power mosfet devices with low-frequency and high-frequency switching under disparate operating conditions. Due to the simplicity and efficiency of the data-driven anomaly detection schemes, the proposed methods can potentially be embedded in real-time digital platforms.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2022.3140721</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Anomalies ; Anomaly detection ; Autoregressive models ; Component reliability ; Cumulative sum (CUSUM) test ; Data models ; Dynamic programming ; Electric vehicles ; Electronic devices ; Feature extraction ; Hidden Markov models ; Monitoring ; MOSFET ; Neural networks ; nonlinear autoregressive exogenous (NARX) ; online anomaly detection ; Outliers (statistics) ; partial least squares (PLS) ; power electronics (PE) ; Real time ; Regression models ; Reliability aspects ; Sequential analysis ; Switching circuits ; Temperature measurement</subject><ispartof>IEEE transactions on power electronics, 2022-06, Vol.37 (6), p.7315-7332</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-7b6fbf71797e15dc981373f7faa52398a1a1e34f4fddccf3997a6ea92ed39a9f3</citedby><cites>FETCH-LOGICAL-c293t-7b6fbf71797e15dc981373f7faa52398a1a1e34f4fddccf3997a6ea92ed39a9f3</cites><orcidid>0000-0002-3933-1697 ; 0000-0003-3777-3501 ; 0000-0001-7218-1187 ; 0000-0002-9870-1133 ; 0000-0002-0565-181X ; 0000-0001-5492-723X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9674845$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9674845$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yang, Qian</creatorcontrib><creatorcontrib>Gultekin, Muhammed A.</creatorcontrib><creatorcontrib>Seferian, Vahe</creatorcontrib><creatorcontrib>Pattipati, Krishna</creatorcontrib><creatorcontrib>Bazzi, Ali M.</creatorcontrib><creatorcontrib>Palmieri, Francesco A. N.</creatorcontrib><creatorcontrib>Rajamani, Ravi</creatorcontrib><creatorcontrib>Joshi, Shailesh</creatorcontrib><creatorcontrib>Farooq, Muhamed</creatorcontrib><creatorcontrib>Ukegawa, Hiroshi</creatorcontrib><title>Incipient Residual-Based Anomaly Detection in Power Electronic Devices</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>Power electronics (PE) and high-frequency switching circuits are key to superior performance of electric vehicles. It is vital to monitor the condition of the PE components in real-time for safety and reliability. In this article, we propose two anomaly detection methods based on a combination of data preprocessing to suppress noise and outliers, multivariate regression models to predict signals of interest under nominal operation, and sequential analysis of residuals. In particular, the methods utilize median filtering to extract on -state medians in each switching cycle in nonlinear autoregressive exogenous neural network models or filtered on -state data in partial least squares-based models to represent the nominal circuit behavior. Optimal and approximate dynamic programming-based feature selection methods are developed to select the most informative signals or their transformations. Predictions from the learned models are used to generate the residuals for anomaly detection by Page's cumulative sum test. The proposed models and anomaly detection methods are validated on three accelerated aging experimental datasets, comprised of 60 power mosfet devices with low-frequency and high-frequency switching under disparate operating conditions. Due to the simplicity and efficiency of the data-driven anomaly detection schemes, the proposed methods can potentially be embedded in real-time digital platforms.</description><subject>Anomalies</subject><subject>Anomaly detection</subject><subject>Autoregressive models</subject><subject>Component reliability</subject><subject>Cumulative sum (CUSUM) test</subject><subject>Data models</subject><subject>Dynamic programming</subject><subject>Electric vehicles</subject><subject>Electronic devices</subject><subject>Feature extraction</subject><subject>Hidden Markov models</subject><subject>Monitoring</subject><subject>MOSFET</subject><subject>Neural networks</subject><subject>nonlinear autoregressive exogenous (NARX)</subject><subject>online anomaly detection</subject><subject>Outliers (statistics)</subject><subject>partial least squares (PLS)</subject><subject>power electronics (PE)</subject><subject>Real time</subject><subject>Regression models</subject><subject>Reliability aspects</subject><subject>Sequential analysis</subject><subject>Switching circuits</subject><subject>Temperature measurement</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFLwzAQx4MoOKcfQHwp-NyZS9qm9zjnpoOBQ-ZzyNILZHTtTDpl334dGz4d_O_3v4MfY4_ARwAcX1bL6WIkuBAjCRlXAq7YADCDlANX12zAyzJPS0R5y-5i3HAOWc5hwGbzxvqdp6ZLvij6am_q9NVEqpJx025NfUjeqCPb-bZJfJMs2z8KybTuk9A23vbbX28p3rMbZ-pID5c5ZN-z6WrykS4-3-eT8SK1AmWXqnXh1k6BQkWQVxZLkEo65YzJhcTSgAGSmctcVVnrJKIyBRkUVEk06OSQPZ_v7kL7s6fY6U27D03_UotCIAilBO8pOFM2tDEGcnoX_NaEgwauT7r0SZc-6dIXXX3n6dzxRPTPY6GyMsvlEXQ0Zkc</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Yang, Qian</creator><creator>Gultekin, Muhammed A.</creator><creator>Seferian, Vahe</creator><creator>Pattipati, Krishna</creator><creator>Bazzi, Ali M.</creator><creator>Palmieri, Francesco A. N.</creator><creator>Rajamani, Ravi</creator><creator>Joshi, Shailesh</creator><creator>Farooq, Muhamed</creator><creator>Ukegawa, Hiroshi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3933-1697</orcidid><orcidid>https://orcid.org/0000-0003-3777-3501</orcidid><orcidid>https://orcid.org/0000-0001-7218-1187</orcidid><orcidid>https://orcid.org/0000-0002-9870-1133</orcidid><orcidid>https://orcid.org/0000-0002-0565-181X</orcidid><orcidid>https://orcid.org/0000-0001-5492-723X</orcidid></search><sort><creationdate>20220601</creationdate><title>Incipient Residual-Based Anomaly Detection in Power Electronic Devices</title><author>Yang, Qian ; Gultekin, Muhammed A. ; Seferian, Vahe ; Pattipati, Krishna ; Bazzi, Ali M. ; Palmieri, Francesco A. N. ; Rajamani, Ravi ; Joshi, Shailesh ; Farooq, Muhamed ; Ukegawa, Hiroshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-7b6fbf71797e15dc981373f7faa52398a1a1e34f4fddccf3997a6ea92ed39a9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anomalies</topic><topic>Anomaly detection</topic><topic>Autoregressive models</topic><topic>Component reliability</topic><topic>Cumulative sum (CUSUM) test</topic><topic>Data models</topic><topic>Dynamic programming</topic><topic>Electric vehicles</topic><topic>Electronic devices</topic><topic>Feature extraction</topic><topic>Hidden Markov models</topic><topic>Monitoring</topic><topic>MOSFET</topic><topic>Neural networks</topic><topic>nonlinear autoregressive exogenous (NARX)</topic><topic>online anomaly detection</topic><topic>Outliers (statistics)</topic><topic>partial least squares (PLS)</topic><topic>power electronics (PE)</topic><topic>Real time</topic><topic>Regression models</topic><topic>Reliability aspects</topic><topic>Sequential analysis</topic><topic>Switching circuits</topic><topic>Temperature measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Qian</creatorcontrib><creatorcontrib>Gultekin, Muhammed A.</creatorcontrib><creatorcontrib>Seferian, Vahe</creatorcontrib><creatorcontrib>Pattipati, Krishna</creatorcontrib><creatorcontrib>Bazzi, Ali M.</creatorcontrib><creatorcontrib>Palmieri, Francesco A. N.</creatorcontrib><creatorcontrib>Rajamani, Ravi</creatorcontrib><creatorcontrib>Joshi, Shailesh</creatorcontrib><creatorcontrib>Farooq, Muhamed</creatorcontrib><creatorcontrib>Ukegawa, Hiroshi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yang, Qian</au><au>Gultekin, Muhammed A.</au><au>Seferian, Vahe</au><au>Pattipati, Krishna</au><au>Bazzi, Ali M.</au><au>Palmieri, Francesco A. N.</au><au>Rajamani, Ravi</au><au>Joshi, Shailesh</au><au>Farooq, Muhamed</au><au>Ukegawa, Hiroshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Incipient Residual-Based Anomaly Detection in Power Electronic Devices</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>37</volume><issue>6</issue><spage>7315</spage><epage>7332</epage><pages>7315-7332</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>Power electronics (PE) and high-frequency switching circuits are key to superior performance of electric vehicles. It is vital to monitor the condition of the PE components in real-time for safety and reliability. In this article, we propose two anomaly detection methods based on a combination of data preprocessing to suppress noise and outliers, multivariate regression models to predict signals of interest under nominal operation, and sequential analysis of residuals. In particular, the methods utilize median filtering to extract on -state medians in each switching cycle in nonlinear autoregressive exogenous neural network models or filtered on -state data in partial least squares-based models to represent the nominal circuit behavior. Optimal and approximate dynamic programming-based feature selection methods are developed to select the most informative signals or their transformations. Predictions from the learned models are used to generate the residuals for anomaly detection by Page's cumulative sum test. The proposed models and anomaly detection methods are validated on three accelerated aging experimental datasets, comprised of 60 power mosfet devices with low-frequency and high-frequency switching under disparate operating conditions. Due to the simplicity and efficiency of the data-driven anomaly detection schemes, the proposed methods can potentially be embedded in real-time digital platforms.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2022.3140721</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-3933-1697</orcidid><orcidid>https://orcid.org/0000-0003-3777-3501</orcidid><orcidid>https://orcid.org/0000-0001-7218-1187</orcidid><orcidid>https://orcid.org/0000-0002-9870-1133</orcidid><orcidid>https://orcid.org/0000-0002-0565-181X</orcidid><orcidid>https://orcid.org/0000-0001-5492-723X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8993
ispartof IEEE transactions on power electronics, 2022-06, Vol.37 (6), p.7315-7332
issn 0885-8993
1941-0107
language eng
recordid cdi_ieee_primary_9674845
source IEEE Electronic Library (IEL)
subjects Anomalies
Anomaly detection
Autoregressive models
Component reliability
Cumulative sum (CUSUM) test
Data models
Dynamic programming
Electric vehicles
Electronic devices
Feature extraction
Hidden Markov models
Monitoring
MOSFET
Neural networks
nonlinear autoregressive exogenous (NARX)
online anomaly detection
Outliers (statistics)
partial least squares (PLS)
power electronics (PE)
Real time
Regression models
Reliability aspects
Sequential analysis
Switching circuits
Temperature measurement
title Incipient Residual-Based Anomaly Detection in Power Electronic Devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A52%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Incipient%20Residual-Based%20Anomaly%20Detection%20in%20Power%20Electronic%20Devices&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Yang,%20Qian&rft.date=2022-06-01&rft.volume=37&rft.issue=6&rft.spage=7315&rft.epage=7332&rft.pages=7315-7332&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2022.3140721&rft_dat=%3Cproquest_RIE%3E2629127720%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2629127720&rft_id=info:pmid/&rft_ieee_id=9674845&rfr_iscdi=true