Statistical H.264 Double Compression Detection Method Based on DCT Coefficients

With the 2019 Coronavirus pandemic, we have seen an increasing use of remote technologies such has remote identity verification. The authentication of the user identity is often performed through a biometric matching of a selfie and a video of an official identity document. In such a scenario, it is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2022-01, Vol.10, p.4271-4283
Hauptverfasser: Mahfoudi, Gael, Retraint, Florent, Morain-Nicolier, Frederic, Pic, Marc Michel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4283
container_issue
container_start_page 4271
container_title IEEE access
container_volume 10
creator Mahfoudi, Gael
Retraint, Florent
Morain-Nicolier, Frederic
Pic, Marc Michel
description With the 2019 Coronavirus pandemic, we have seen an increasing use of remote technologies such has remote identity verification. The authentication of the user identity is often performed through a biometric matching of a selfie and a video of an official identity document. In such a scenario, it is essential to verify the integrity of both the selfie and the video. In this article, we propose a method to detect double video compression in order to verify the video integrity. We will focus on the H.264 compression which is one of the mandatory video codecs in the WebRTC Requests For Comments. H.264 uses an integer approximation of the Discrete Cosine Transform (DCT). Our method focuses on the DCT coefficients to detect a double compression. The coefficients roughly follow a Laplacian distribution, we will show that the distribution parameters vary with respect to the quantisation parameter used to compress the video. We thus propose a statistical hypothesis test to determine whether or not a video has been compressed twice.
doi_str_mv 10.1109/ACCESS.2022.3140588
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9672136</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9672136</ieee_id><doaj_id>oai_doaj_org_article_2c0b5e99673843bcbefac19303dc81c4</doaj_id><sourcerecordid>2621064818</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-69c7da81f3c9ef87749fd2ab66993b68bf5ae7b3fa2e1da09b6d98ce78dc15ef3</originalsourceid><addsrcrecordid>eNpVkUtLAzEUhQdRUNRf4GbAlYvWPGYyybJOqxUqLqrrkMeNThmbmqSC_96MI6LZ5HJyzkcupyguMJpijMT1rG0X6_WUIEKmFFeo5vygOCGYiQmtKTv8Mx8X5zFuUD48S3VzUjyuk0pdTJ1RfbmcElaVc7_XPZStf9sFiLHz23IOCUwapgdIr96WNyqCLYeX9ik7wbnOdLBN8aw4cqqPcP5znxbPt4undjlZPd7dt7PVxFQVSRMmTGMVx44aAY43TSWcJUozJgTVjGtXK2g0dYoAtgoJzazgBhpuDa7B0dPifuRarzZyF7o3FT6lV538Fnx4kSrkrXqQxCBdgxCsobyi2mhwymBBEbWGY1Nl1tXIelX9P9RytpKDhmhNKCbNB87ey9G7C_59DzHJjd-HbV5VEkYwYhXHPLvo6DLBxxjA_WIxkkNpcixNDqXJn9Jy6mJMdQDwm8j_Jpgy-gUThpEN</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621064818</pqid></control><display><type>article</type><title>Statistical H.264 Double Compression Detection Method Based on DCT Coefficients</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Mahfoudi, Gael ; Retraint, Florent ; Morain-Nicolier, Frederic ; Pic, Marc Michel</creator><creatorcontrib>Mahfoudi, Gael ; Retraint, Florent ; Morain-Nicolier, Frederic ; Pic, Marc Michel</creatorcontrib><description>With the 2019 Coronavirus pandemic, we have seen an increasing use of remote technologies such has remote identity verification. The authentication of the user identity is often performed through a biometric matching of a selfie and a video of an official identity document. In such a scenario, it is essential to verify the integrity of both the selfie and the video. In this article, we propose a method to detect double video compression in order to verify the video integrity. We will focus on the H.264 compression which is one of the mandatory video codecs in the WebRTC Requests For Comments. H.264 uses an integer approximation of the Discrete Cosine Transform (DCT). Our method focuses on the DCT coefficients to detect a double compression. The coefficients roughly follow a Laplacian distribution, we will show that the distribution parameters vary with respect to the quantisation parameter used to compress the video. We thus propose a statistical hypothesis test to determine whether or not a video has been compressed twice.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3140588</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Bit rate ; Codec ; Coefficients ; DCT ; Discrete cosine transform ; Discrete cosine transforms ; double compression ; Engineering Sciences ; H.264 ; hypothesis testing ; Integrity ; Parameters ; Quantization (signal) ; Signal and Image processing ; Streaming media ; Video compression ; Video forensics ; WebRTC</subject><ispartof>IEEE access, 2022-01, Vol.10, p.4271-4283</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-69c7da81f3c9ef87749fd2ab66993b68bf5ae7b3fa2e1da09b6d98ce78dc15ef3</citedby><cites>FETCH-LOGICAL-c442t-69c7da81f3c9ef87749fd2ab66993b68bf5ae7b3fa2e1da09b6d98ce78dc15ef3</cites><orcidid>0000-0003-0989-1068 ; 0000-0001-9273-4260 ; 0000-0002-6709-6700</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9672136$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,864,885,2100,27631,27922,27923,54931</link.rule.ids><backlink>$$Uhttps://hal.univ-reims.fr/hal-03523127$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Mahfoudi, Gael</creatorcontrib><creatorcontrib>Retraint, Florent</creatorcontrib><creatorcontrib>Morain-Nicolier, Frederic</creatorcontrib><creatorcontrib>Pic, Marc Michel</creatorcontrib><title>Statistical H.264 Double Compression Detection Method Based on DCT Coefficients</title><title>IEEE access</title><addtitle>Access</addtitle><description>With the 2019 Coronavirus pandemic, we have seen an increasing use of remote technologies such has remote identity verification. The authentication of the user identity is often performed through a biometric matching of a selfie and a video of an official identity document. In such a scenario, it is essential to verify the integrity of both the selfie and the video. In this article, we propose a method to detect double video compression in order to verify the video integrity. We will focus on the H.264 compression which is one of the mandatory video codecs in the WebRTC Requests For Comments. H.264 uses an integer approximation of the Discrete Cosine Transform (DCT). Our method focuses on the DCT coefficients to detect a double compression. The coefficients roughly follow a Laplacian distribution, we will show that the distribution parameters vary with respect to the quantisation parameter used to compress the video. We thus propose a statistical hypothesis test to determine whether or not a video has been compressed twice.</description><subject>Bit rate</subject><subject>Codec</subject><subject>Coefficients</subject><subject>DCT</subject><subject>Discrete cosine transform</subject><subject>Discrete cosine transforms</subject><subject>double compression</subject><subject>Engineering Sciences</subject><subject>H.264</subject><subject>hypothesis testing</subject><subject>Integrity</subject><subject>Parameters</subject><subject>Quantization (signal)</subject><subject>Signal and Image processing</subject><subject>Streaming media</subject><subject>Video compression</subject><subject>Video forensics</subject><subject>WebRTC</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpVkUtLAzEUhQdRUNRf4GbAlYvWPGYyybJOqxUqLqrrkMeNThmbmqSC_96MI6LZ5HJyzkcupyguMJpijMT1rG0X6_WUIEKmFFeo5vygOCGYiQmtKTv8Mx8X5zFuUD48S3VzUjyuk0pdTJ1RfbmcElaVc7_XPZStf9sFiLHz23IOCUwapgdIr96WNyqCLYeX9ik7wbnOdLBN8aw4cqqPcP5znxbPt4undjlZPd7dt7PVxFQVSRMmTGMVx44aAY43TSWcJUozJgTVjGtXK2g0dYoAtgoJzazgBhpuDa7B0dPifuRarzZyF7o3FT6lV538Fnx4kSrkrXqQxCBdgxCsobyi2mhwymBBEbWGY1Nl1tXIelX9P9RytpKDhmhNKCbNB87ey9G7C_59DzHJjd-HbV5VEkYwYhXHPLvo6DLBxxjA_WIxkkNpcixNDqXJn9Jy6mJMdQDwm8j_Jpgy-gUThpEN</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Mahfoudi, Gael</creator><creator>Retraint, Florent</creator><creator>Morain-Nicolier, Frederic</creator><creator>Pic, Marc Michel</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0989-1068</orcidid><orcidid>https://orcid.org/0000-0001-9273-4260</orcidid><orcidid>https://orcid.org/0000-0002-6709-6700</orcidid></search><sort><creationdate>20220101</creationdate><title>Statistical H.264 Double Compression Detection Method Based on DCT Coefficients</title><author>Mahfoudi, Gael ; Retraint, Florent ; Morain-Nicolier, Frederic ; Pic, Marc Michel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-69c7da81f3c9ef87749fd2ab66993b68bf5ae7b3fa2e1da09b6d98ce78dc15ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bit rate</topic><topic>Codec</topic><topic>Coefficients</topic><topic>DCT</topic><topic>Discrete cosine transform</topic><topic>Discrete cosine transforms</topic><topic>double compression</topic><topic>Engineering Sciences</topic><topic>H.264</topic><topic>hypothesis testing</topic><topic>Integrity</topic><topic>Parameters</topic><topic>Quantization (signal)</topic><topic>Signal and Image processing</topic><topic>Streaming media</topic><topic>Video compression</topic><topic>Video forensics</topic><topic>WebRTC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahfoudi, Gael</creatorcontrib><creatorcontrib>Retraint, Florent</creatorcontrib><creatorcontrib>Morain-Nicolier, Frederic</creatorcontrib><creatorcontrib>Pic, Marc Michel</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahfoudi, Gael</au><au>Retraint, Florent</au><au>Morain-Nicolier, Frederic</au><au>Pic, Marc Michel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical H.264 Double Compression Detection Method Based on DCT Coefficients</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022-01-01</date><risdate>2022</risdate><volume>10</volume><spage>4271</spage><epage>4283</epage><pages>4271-4283</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>With the 2019 Coronavirus pandemic, we have seen an increasing use of remote technologies such has remote identity verification. The authentication of the user identity is often performed through a biometric matching of a selfie and a video of an official identity document. In such a scenario, it is essential to verify the integrity of both the selfie and the video. In this article, we propose a method to detect double video compression in order to verify the video integrity. We will focus on the H.264 compression which is one of the mandatory video codecs in the WebRTC Requests For Comments. H.264 uses an integer approximation of the Discrete Cosine Transform (DCT). Our method focuses on the DCT coefficients to detect a double compression. The coefficients roughly follow a Laplacian distribution, we will show that the distribution parameters vary with respect to the quantisation parameter used to compress the video. We thus propose a statistical hypothesis test to determine whether or not a video has been compressed twice.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3140588</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0989-1068</orcidid><orcidid>https://orcid.org/0000-0001-9273-4260</orcidid><orcidid>https://orcid.org/0000-0002-6709-6700</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2022-01, Vol.10, p.4271-4283
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_9672136
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Bit rate
Codec
Coefficients
DCT
Discrete cosine transform
Discrete cosine transforms
double compression
Engineering Sciences
H.264
hypothesis testing
Integrity
Parameters
Quantization (signal)
Signal and Image processing
Streaming media
Video compression
Video forensics
WebRTC
title Statistical H.264 Double Compression Detection Method Based on DCT Coefficients
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T17%3A58%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20H.264%20Double%20Compression%20Detection%20Method%20Based%20on%20DCT%20Coefficients&rft.jtitle=IEEE%20access&rft.au=Mahfoudi,%20Gael&rft.date=2022-01-01&rft.volume=10&rft.spage=4271&rft.epage=4283&rft.pages=4271-4283&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3140588&rft_dat=%3Cproquest_ieee_%3E2621064818%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2621064818&rft_id=info:pmid/&rft_ieee_id=9672136&rft_doaj_id=oai_doaj_org_article_2c0b5e99673843bcbefac19303dc81c4&rfr_iscdi=true