Statistical H.264 Double Compression Detection Method Based on DCT Coefficients
With the 2019 Coronavirus pandemic, we have seen an increasing use of remote technologies such has remote identity verification. The authentication of the user identity is often performed through a biometric matching of a selfie and a video of an official identity document. In such a scenario, it is...
Gespeichert in:
Veröffentlicht in: | IEEE access 2022-01, Vol.10, p.4271-4283 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4283 |
---|---|
container_issue | |
container_start_page | 4271 |
container_title | IEEE access |
container_volume | 10 |
creator | Mahfoudi, Gael Retraint, Florent Morain-Nicolier, Frederic Pic, Marc Michel |
description | With the 2019 Coronavirus pandemic, we have seen an increasing use of remote technologies such has remote identity verification. The authentication of the user identity is often performed through a biometric matching of a selfie and a video of an official identity document. In such a scenario, it is essential to verify the integrity of both the selfie and the video. In this article, we propose a method to detect double video compression in order to verify the video integrity. We will focus on the H.264 compression which is one of the mandatory video codecs in the WebRTC Requests For Comments. H.264 uses an integer approximation of the Discrete Cosine Transform (DCT). Our method focuses on the DCT coefficients to detect a double compression. The coefficients roughly follow a Laplacian distribution, we will show that the distribution parameters vary with respect to the quantisation parameter used to compress the video. We thus propose a statistical hypothesis test to determine whether or not a video has been compressed twice. |
doi_str_mv | 10.1109/ACCESS.2022.3140588 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9672136</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9672136</ieee_id><doaj_id>oai_doaj_org_article_2c0b5e99673843bcbefac19303dc81c4</doaj_id><sourcerecordid>2621064818</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-69c7da81f3c9ef87749fd2ab66993b68bf5ae7b3fa2e1da09b6d98ce78dc15ef3</originalsourceid><addsrcrecordid>eNpVkUtLAzEUhQdRUNRf4GbAlYvWPGYyybJOqxUqLqrrkMeNThmbmqSC_96MI6LZ5HJyzkcupyguMJpijMT1rG0X6_WUIEKmFFeo5vygOCGYiQmtKTv8Mx8X5zFuUD48S3VzUjyuk0pdTJ1RfbmcElaVc7_XPZStf9sFiLHz23IOCUwapgdIr96WNyqCLYeX9ik7wbnOdLBN8aw4cqqPcP5znxbPt4undjlZPd7dt7PVxFQVSRMmTGMVx44aAY43TSWcJUozJgTVjGtXK2g0dYoAtgoJzazgBhpuDa7B0dPifuRarzZyF7o3FT6lV538Fnx4kSrkrXqQxCBdgxCsobyi2mhwymBBEbWGY1Nl1tXIelX9P9RytpKDhmhNKCbNB87ey9G7C_59DzHJjd-HbV5VEkYwYhXHPLvo6DLBxxjA_WIxkkNpcixNDqXJn9Jy6mJMdQDwm8j_Jpgy-gUThpEN</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621064818</pqid></control><display><type>article</type><title>Statistical H.264 Double Compression Detection Method Based on DCT Coefficients</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Mahfoudi, Gael ; Retraint, Florent ; Morain-Nicolier, Frederic ; Pic, Marc Michel</creator><creatorcontrib>Mahfoudi, Gael ; Retraint, Florent ; Morain-Nicolier, Frederic ; Pic, Marc Michel</creatorcontrib><description>With the 2019 Coronavirus pandemic, we have seen an increasing use of remote technologies such has remote identity verification. The authentication of the user identity is often performed through a biometric matching of a selfie and a video of an official identity document. In such a scenario, it is essential to verify the integrity of both the selfie and the video. In this article, we propose a method to detect double video compression in order to verify the video integrity. We will focus on the H.264 compression which is one of the mandatory video codecs in the WebRTC Requests For Comments. H.264 uses an integer approximation of the Discrete Cosine Transform (DCT). Our method focuses on the DCT coefficients to detect a double compression. The coefficients roughly follow a Laplacian distribution, we will show that the distribution parameters vary with respect to the quantisation parameter used to compress the video. We thus propose a statistical hypothesis test to determine whether or not a video has been compressed twice.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3140588</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Bit rate ; Codec ; Coefficients ; DCT ; Discrete cosine transform ; Discrete cosine transforms ; double compression ; Engineering Sciences ; H.264 ; hypothesis testing ; Integrity ; Parameters ; Quantization (signal) ; Signal and Image processing ; Streaming media ; Video compression ; Video forensics ; WebRTC</subject><ispartof>IEEE access, 2022-01, Vol.10, p.4271-4283</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-69c7da81f3c9ef87749fd2ab66993b68bf5ae7b3fa2e1da09b6d98ce78dc15ef3</citedby><cites>FETCH-LOGICAL-c442t-69c7da81f3c9ef87749fd2ab66993b68bf5ae7b3fa2e1da09b6d98ce78dc15ef3</cites><orcidid>0000-0003-0989-1068 ; 0000-0001-9273-4260 ; 0000-0002-6709-6700</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9672136$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,864,885,2100,27631,27922,27923,54931</link.rule.ids><backlink>$$Uhttps://hal.univ-reims.fr/hal-03523127$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Mahfoudi, Gael</creatorcontrib><creatorcontrib>Retraint, Florent</creatorcontrib><creatorcontrib>Morain-Nicolier, Frederic</creatorcontrib><creatorcontrib>Pic, Marc Michel</creatorcontrib><title>Statistical H.264 Double Compression Detection Method Based on DCT Coefficients</title><title>IEEE access</title><addtitle>Access</addtitle><description>With the 2019 Coronavirus pandemic, we have seen an increasing use of remote technologies such has remote identity verification. The authentication of the user identity is often performed through a biometric matching of a selfie and a video of an official identity document. In such a scenario, it is essential to verify the integrity of both the selfie and the video. In this article, we propose a method to detect double video compression in order to verify the video integrity. We will focus on the H.264 compression which is one of the mandatory video codecs in the WebRTC Requests For Comments. H.264 uses an integer approximation of the Discrete Cosine Transform (DCT). Our method focuses on the DCT coefficients to detect a double compression. The coefficients roughly follow a Laplacian distribution, we will show that the distribution parameters vary with respect to the quantisation parameter used to compress the video. We thus propose a statistical hypothesis test to determine whether or not a video has been compressed twice.</description><subject>Bit rate</subject><subject>Codec</subject><subject>Coefficients</subject><subject>DCT</subject><subject>Discrete cosine transform</subject><subject>Discrete cosine transforms</subject><subject>double compression</subject><subject>Engineering Sciences</subject><subject>H.264</subject><subject>hypothesis testing</subject><subject>Integrity</subject><subject>Parameters</subject><subject>Quantization (signal)</subject><subject>Signal and Image processing</subject><subject>Streaming media</subject><subject>Video compression</subject><subject>Video forensics</subject><subject>WebRTC</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpVkUtLAzEUhQdRUNRf4GbAlYvWPGYyybJOqxUqLqrrkMeNThmbmqSC_96MI6LZ5HJyzkcupyguMJpijMT1rG0X6_WUIEKmFFeo5vygOCGYiQmtKTv8Mx8X5zFuUD48S3VzUjyuk0pdTJ1RfbmcElaVc7_XPZStf9sFiLHz23IOCUwapgdIr96WNyqCLYeX9ik7wbnOdLBN8aw4cqqPcP5znxbPt4undjlZPd7dt7PVxFQVSRMmTGMVx44aAY43TSWcJUozJgTVjGtXK2g0dYoAtgoJzazgBhpuDa7B0dPifuRarzZyF7o3FT6lV538Fnx4kSrkrXqQxCBdgxCsobyi2mhwymBBEbWGY1Nl1tXIelX9P9RytpKDhmhNKCbNB87ey9G7C_59DzHJjd-HbV5VEkYwYhXHPLvo6DLBxxjA_WIxkkNpcixNDqXJn9Jy6mJMdQDwm8j_Jpgy-gUThpEN</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Mahfoudi, Gael</creator><creator>Retraint, Florent</creator><creator>Morain-Nicolier, Frederic</creator><creator>Pic, Marc Michel</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0989-1068</orcidid><orcidid>https://orcid.org/0000-0001-9273-4260</orcidid><orcidid>https://orcid.org/0000-0002-6709-6700</orcidid></search><sort><creationdate>20220101</creationdate><title>Statistical H.264 Double Compression Detection Method Based on DCT Coefficients</title><author>Mahfoudi, Gael ; Retraint, Florent ; Morain-Nicolier, Frederic ; Pic, Marc Michel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-69c7da81f3c9ef87749fd2ab66993b68bf5ae7b3fa2e1da09b6d98ce78dc15ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bit rate</topic><topic>Codec</topic><topic>Coefficients</topic><topic>DCT</topic><topic>Discrete cosine transform</topic><topic>Discrete cosine transforms</topic><topic>double compression</topic><topic>Engineering Sciences</topic><topic>H.264</topic><topic>hypothesis testing</topic><topic>Integrity</topic><topic>Parameters</topic><topic>Quantization (signal)</topic><topic>Signal and Image processing</topic><topic>Streaming media</topic><topic>Video compression</topic><topic>Video forensics</topic><topic>WebRTC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahfoudi, Gael</creatorcontrib><creatorcontrib>Retraint, Florent</creatorcontrib><creatorcontrib>Morain-Nicolier, Frederic</creatorcontrib><creatorcontrib>Pic, Marc Michel</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahfoudi, Gael</au><au>Retraint, Florent</au><au>Morain-Nicolier, Frederic</au><au>Pic, Marc Michel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical H.264 Double Compression Detection Method Based on DCT Coefficients</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022-01-01</date><risdate>2022</risdate><volume>10</volume><spage>4271</spage><epage>4283</epage><pages>4271-4283</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>With the 2019 Coronavirus pandemic, we have seen an increasing use of remote technologies such has remote identity verification. The authentication of the user identity is often performed through a biometric matching of a selfie and a video of an official identity document. In such a scenario, it is essential to verify the integrity of both the selfie and the video. In this article, we propose a method to detect double video compression in order to verify the video integrity. We will focus on the H.264 compression which is one of the mandatory video codecs in the WebRTC Requests For Comments. H.264 uses an integer approximation of the Discrete Cosine Transform (DCT). Our method focuses on the DCT coefficients to detect a double compression. The coefficients roughly follow a Laplacian distribution, we will show that the distribution parameters vary with respect to the quantisation parameter used to compress the video. We thus propose a statistical hypothesis test to determine whether or not a video has been compressed twice.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3140588</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0989-1068</orcidid><orcidid>https://orcid.org/0000-0001-9273-4260</orcidid><orcidid>https://orcid.org/0000-0002-6709-6700</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2022-01, Vol.10, p.4271-4283 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_9672136 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Bit rate Codec Coefficients DCT Discrete cosine transform Discrete cosine transforms double compression Engineering Sciences H.264 hypothesis testing Integrity Parameters Quantization (signal) Signal and Image processing Streaming media Video compression Video forensics WebRTC |
title | Statistical H.264 Double Compression Detection Method Based on DCT Coefficients |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T17%3A58%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20H.264%20Double%20Compression%20Detection%20Method%20Based%20on%20DCT%20Coefficients&rft.jtitle=IEEE%20access&rft.au=Mahfoudi,%20Gael&rft.date=2022-01-01&rft.volume=10&rft.spage=4271&rft.epage=4283&rft.pages=4271-4283&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3140588&rft_dat=%3Cproquest_ieee_%3E2621064818%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2621064818&rft_id=info:pmid/&rft_ieee_id=9672136&rft_doaj_id=oai_doaj_org_article_2c0b5e99673843bcbefac19303dc81c4&rfr_iscdi=true |