A Robust Health Indicator for Rotating Machinery Under Time-Varying Operating Conditions
Bearing is an essential component whose failure leads to costly downtime in operation. Therefore, it is important to establish an accurate health indicator (HI), using which the remaining useful life can be reliably predicted. To date, most of the health assessment for bearing have been focused on t...
Gespeichert in:
Veröffentlicht in: | IEEE access 2022, Vol.10, p.4993-5001 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5001 |
---|---|
container_issue | |
container_start_page | 4993 |
container_title | IEEE access |
container_volume | 10 |
creator | Kim, Seokgoo Park, Hyung Jun Seo, Yun-Ho Choi, Joo-Ho |
description | Bearing is an essential component whose failure leads to costly downtime in operation. Therefore, it is important to establish an accurate health indicator (HI), using which the remaining useful life can be reliably predicted. To date, most of the health assessment for bearing have been focused on the constant operating condition while in practice, it operates under various operating conditions (rotating speed and loading). Motivated by this, this paper proposes a method to extract robust HI which undergoes variable operating conditions. The idea is to cluster the operating conditions regimes, and develop HI based on the Mahalanobis distance using the optimal features subset in each regime. To validate the effectiveness, bearing run-to-fail experiment is performed under variable operating condition, and proposed HI is compared with the traditional statistical features. The remaining useful life is predicted by the data augmentation prognostics algorithm which was to overcome data deficiency problem. |
doi_str_mv | 10.1109/ACCESS.2022.3140755 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9672115</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9672115</ieee_id><doaj_id>oai_doaj_org_article_8179c0fa56104815af00018be9188f46</doaj_id><sourcerecordid>2621064470</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-d32ca1eca7e8d2946e707ee9412618ba786f11aa33453655b8525aa3f81d7fb03</originalsourceid><addsrcrecordid>eNpNUUtLAzEQXkRBUX-BlwXPWzN577EsPgqK4AtvId2dtCl1U7PpwX9v6pZiIGQyme9BvqK4AjIBIPXNtGluX18nlFA6YcCJEuKoOKMg64oJJo__1afF5TCsSF46t4Q6Kz6n5UuYb4dUPqBdp2U56zvf2hRi6fJ-Cckm3y_KJ9sufY_xp3zvO4zlm__C6sPGn93j8wbjONaEDE8-9MNFceLsesDL_XlevN_dvjUP1ePz_ayZPlYtJzpVHaOtBWytQt3RmktURCHWHKgEPbdKSwdgLWM8-xdirgUV-eo0dMrNCTsvZiNvF-zKbKL_yqZMsN78NUJcGBuTb9doNKi6Jc4KCYRrENblj8giWIPWjsvMdT1ybWL43uKQzCpsY5_tGyopEMm52imycaqNYRgiuoMqELNLxIyJmF0iZp9IRl2NKI-IB0QtFQUQ7Bcmx4V4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621064470</pqid></control><display><type>article</type><title>A Robust Health Indicator for Rotating Machinery Under Time-Varying Operating Conditions</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Kim, Seokgoo ; Park, Hyung Jun ; Seo, Yun-Ho ; Choi, Joo-Ho</creator><creatorcontrib>Kim, Seokgoo ; Park, Hyung Jun ; Seo, Yun-Ho ; Choi, Joo-Ho</creatorcontrib><description>Bearing is an essential component whose failure leads to costly downtime in operation. Therefore, it is important to establish an accurate health indicator (HI), using which the remaining useful life can be reliably predicted. To date, most of the health assessment for bearing have been focused on the constant operating condition while in practice, it operates under various operating conditions (rotating speed and loading). Motivated by this, this paper proposes a method to extract robust HI which undergoes variable operating conditions. The idea is to cluster the operating conditions regimes, and develop HI based on the Mahalanobis distance using the optimal features subset in each regime. To validate the effectiveness, bearing run-to-fail experiment is performed under variable operating condition, and proposed HI is compared with the traditional statistical features. The remaining useful life is predicted by the data augmentation prognostics algorithm which was to overcome data deficiency problem.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3140755</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Aerospace engineering ; Algorithms ; bearing ; Correlation ; Downtime ; Feature extraction ; Health indicator ; Loading ; Machinery ; mahalanobis distance ; prognostics ; Prognostics and health management ; Robustness ; Rotating machinery ; Useful life ; variable operating conditions ; Vibrations</subject><ispartof>IEEE access, 2022, Vol.10, p.4993-5001</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-d32ca1eca7e8d2946e707ee9412618ba786f11aa33453655b8525aa3f81d7fb03</citedby><cites>FETCH-LOGICAL-c408t-d32ca1eca7e8d2946e707ee9412618ba786f11aa33453655b8525aa3f81d7fb03</cites><orcidid>0000-0003-3174-2392 ; 0000-0002-1709-4491 ; 0000-0003-1205-7736</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9672115$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Kim, Seokgoo</creatorcontrib><creatorcontrib>Park, Hyung Jun</creatorcontrib><creatorcontrib>Seo, Yun-Ho</creatorcontrib><creatorcontrib>Choi, Joo-Ho</creatorcontrib><title>A Robust Health Indicator for Rotating Machinery Under Time-Varying Operating Conditions</title><title>IEEE access</title><addtitle>Access</addtitle><description>Bearing is an essential component whose failure leads to costly downtime in operation. Therefore, it is important to establish an accurate health indicator (HI), using which the remaining useful life can be reliably predicted. To date, most of the health assessment for bearing have been focused on the constant operating condition while in practice, it operates under various operating conditions (rotating speed and loading). Motivated by this, this paper proposes a method to extract robust HI which undergoes variable operating conditions. The idea is to cluster the operating conditions regimes, and develop HI based on the Mahalanobis distance using the optimal features subset in each regime. To validate the effectiveness, bearing run-to-fail experiment is performed under variable operating condition, and proposed HI is compared with the traditional statistical features. The remaining useful life is predicted by the data augmentation prognostics algorithm which was to overcome data deficiency problem.</description><subject>Aerospace engineering</subject><subject>Algorithms</subject><subject>bearing</subject><subject>Correlation</subject><subject>Downtime</subject><subject>Feature extraction</subject><subject>Health indicator</subject><subject>Loading</subject><subject>Machinery</subject><subject>mahalanobis distance</subject><subject>prognostics</subject><subject>Prognostics and health management</subject><subject>Robustness</subject><subject>Rotating machinery</subject><subject>Useful life</subject><subject>variable operating conditions</subject><subject>Vibrations</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUUtLAzEQXkRBUX-BlwXPWzN577EsPgqK4AtvId2dtCl1U7PpwX9v6pZiIGQyme9BvqK4AjIBIPXNtGluX18nlFA6YcCJEuKoOKMg64oJJo__1afF5TCsSF46t4Q6Kz6n5UuYb4dUPqBdp2U56zvf2hRi6fJ-Cckm3y_KJ9sufY_xp3zvO4zlm__C6sPGn93j8wbjONaEDE8-9MNFceLsesDL_XlevN_dvjUP1ePz_ayZPlYtJzpVHaOtBWytQt3RmktURCHWHKgEPbdKSwdgLWM8-xdirgUV-eo0dMrNCTsvZiNvF-zKbKL_yqZMsN78NUJcGBuTb9doNKi6Jc4KCYRrENblj8giWIPWjsvMdT1ybWL43uKQzCpsY5_tGyopEMm52imycaqNYRgiuoMqELNLxIyJmF0iZp9IRl2NKI-IB0QtFQUQ7Bcmx4V4</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Kim, Seokgoo</creator><creator>Park, Hyung Jun</creator><creator>Seo, Yun-Ho</creator><creator>Choi, Joo-Ho</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3174-2392</orcidid><orcidid>https://orcid.org/0000-0002-1709-4491</orcidid><orcidid>https://orcid.org/0000-0003-1205-7736</orcidid></search><sort><creationdate>2022</creationdate><title>A Robust Health Indicator for Rotating Machinery Under Time-Varying Operating Conditions</title><author>Kim, Seokgoo ; Park, Hyung Jun ; Seo, Yun-Ho ; Choi, Joo-Ho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-d32ca1eca7e8d2946e707ee9412618ba786f11aa33453655b8525aa3f81d7fb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aerospace engineering</topic><topic>Algorithms</topic><topic>bearing</topic><topic>Correlation</topic><topic>Downtime</topic><topic>Feature extraction</topic><topic>Health indicator</topic><topic>Loading</topic><topic>Machinery</topic><topic>mahalanobis distance</topic><topic>prognostics</topic><topic>Prognostics and health management</topic><topic>Robustness</topic><topic>Rotating machinery</topic><topic>Useful life</topic><topic>variable operating conditions</topic><topic>Vibrations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Seokgoo</creatorcontrib><creatorcontrib>Park, Hyung Jun</creatorcontrib><creatorcontrib>Seo, Yun-Ho</creatorcontrib><creatorcontrib>Choi, Joo-Ho</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Seokgoo</au><au>Park, Hyung Jun</au><au>Seo, Yun-Ho</au><au>Choi, Joo-Ho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Robust Health Indicator for Rotating Machinery Under Time-Varying Operating Conditions</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>4993</spage><epage>5001</epage><pages>4993-5001</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Bearing is an essential component whose failure leads to costly downtime in operation. Therefore, it is important to establish an accurate health indicator (HI), using which the remaining useful life can be reliably predicted. To date, most of the health assessment for bearing have been focused on the constant operating condition while in practice, it operates under various operating conditions (rotating speed and loading). Motivated by this, this paper proposes a method to extract robust HI which undergoes variable operating conditions. The idea is to cluster the operating conditions regimes, and develop HI based on the Mahalanobis distance using the optimal features subset in each regime. To validate the effectiveness, bearing run-to-fail experiment is performed under variable operating condition, and proposed HI is compared with the traditional statistical features. The remaining useful life is predicted by the data augmentation prognostics algorithm which was to overcome data deficiency problem.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3140755</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3174-2392</orcidid><orcidid>https://orcid.org/0000-0002-1709-4491</orcidid><orcidid>https://orcid.org/0000-0003-1205-7736</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2022, Vol.10, p.4993-5001 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_9672115 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Aerospace engineering Algorithms bearing Correlation Downtime Feature extraction Health indicator Loading Machinery mahalanobis distance prognostics Prognostics and health management Robustness Rotating machinery Useful life variable operating conditions Vibrations |
title | A Robust Health Indicator for Rotating Machinery Under Time-Varying Operating Conditions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T22%3A36%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Robust%20Health%20Indicator%20for%20Rotating%20Machinery%20Under%20Time-Varying%20Operating%20Conditions&rft.jtitle=IEEE%20access&rft.au=Kim,%20Seokgoo&rft.date=2022&rft.volume=10&rft.spage=4993&rft.epage=5001&rft.pages=4993-5001&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3140755&rft_dat=%3Cproquest_ieee_%3E2621064470%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2621064470&rft_id=info:pmid/&rft_ieee_id=9672115&rft_doaj_id=oai_doaj_org_article_8179c0fa56104815af00018be9188f46&rfr_iscdi=true |