A Robust Health Indicator for Rotating Machinery Under Time-Varying Operating Conditions

Bearing is an essential component whose failure leads to costly downtime in operation. Therefore, it is important to establish an accurate health indicator (HI), using which the remaining useful life can be reliably predicted. To date, most of the health assessment for bearing have been focused on t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2022, Vol.10, p.4993-5001
Hauptverfasser: Kim, Seokgoo, Park, Hyung Jun, Seo, Yun-Ho, Choi, Joo-Ho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5001
container_issue
container_start_page 4993
container_title IEEE access
container_volume 10
creator Kim, Seokgoo
Park, Hyung Jun
Seo, Yun-Ho
Choi, Joo-Ho
description Bearing is an essential component whose failure leads to costly downtime in operation. Therefore, it is important to establish an accurate health indicator (HI), using which the remaining useful life can be reliably predicted. To date, most of the health assessment for bearing have been focused on the constant operating condition while in practice, it operates under various operating conditions (rotating speed and loading). Motivated by this, this paper proposes a method to extract robust HI which undergoes variable operating conditions. The idea is to cluster the operating conditions regimes, and develop HI based on the Mahalanobis distance using the optimal features subset in each regime. To validate the effectiveness, bearing run-to-fail experiment is performed under variable operating condition, and proposed HI is compared with the traditional statistical features. The remaining useful life is predicted by the data augmentation prognostics algorithm which was to overcome data deficiency problem.
doi_str_mv 10.1109/ACCESS.2022.3140755
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9672115</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9672115</ieee_id><doaj_id>oai_doaj_org_article_8179c0fa56104815af00018be9188f46</doaj_id><sourcerecordid>2621064470</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-d32ca1eca7e8d2946e707ee9412618ba786f11aa33453655b8525aa3f81d7fb03</originalsourceid><addsrcrecordid>eNpNUUtLAzEQXkRBUX-BlwXPWzN577EsPgqK4AtvId2dtCl1U7PpwX9v6pZiIGQyme9BvqK4AjIBIPXNtGluX18nlFA6YcCJEuKoOKMg64oJJo__1afF5TCsSF46t4Q6Kz6n5UuYb4dUPqBdp2U56zvf2hRi6fJ-Cckm3y_KJ9sufY_xp3zvO4zlm__C6sPGn93j8wbjONaEDE8-9MNFceLsesDL_XlevN_dvjUP1ePz_ayZPlYtJzpVHaOtBWytQt3RmktURCHWHKgEPbdKSwdgLWM8-xdirgUV-eo0dMrNCTsvZiNvF-zKbKL_yqZMsN78NUJcGBuTb9doNKi6Jc4KCYRrENblj8giWIPWjsvMdT1ybWL43uKQzCpsY5_tGyopEMm52imycaqNYRgiuoMqELNLxIyJmF0iZp9IRl2NKI-IB0QtFQUQ7Bcmx4V4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621064470</pqid></control><display><type>article</type><title>A Robust Health Indicator for Rotating Machinery Under Time-Varying Operating Conditions</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Kim, Seokgoo ; Park, Hyung Jun ; Seo, Yun-Ho ; Choi, Joo-Ho</creator><creatorcontrib>Kim, Seokgoo ; Park, Hyung Jun ; Seo, Yun-Ho ; Choi, Joo-Ho</creatorcontrib><description>Bearing is an essential component whose failure leads to costly downtime in operation. Therefore, it is important to establish an accurate health indicator (HI), using which the remaining useful life can be reliably predicted. To date, most of the health assessment for bearing have been focused on the constant operating condition while in practice, it operates under various operating conditions (rotating speed and loading). Motivated by this, this paper proposes a method to extract robust HI which undergoes variable operating conditions. The idea is to cluster the operating conditions regimes, and develop HI based on the Mahalanobis distance using the optimal features subset in each regime. To validate the effectiveness, bearing run-to-fail experiment is performed under variable operating condition, and proposed HI is compared with the traditional statistical features. The remaining useful life is predicted by the data augmentation prognostics algorithm which was to overcome data deficiency problem.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3140755</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Aerospace engineering ; Algorithms ; bearing ; Correlation ; Downtime ; Feature extraction ; Health indicator ; Loading ; Machinery ; mahalanobis distance ; prognostics ; Prognostics and health management ; Robustness ; Rotating machinery ; Useful life ; variable operating conditions ; Vibrations</subject><ispartof>IEEE access, 2022, Vol.10, p.4993-5001</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-d32ca1eca7e8d2946e707ee9412618ba786f11aa33453655b8525aa3f81d7fb03</citedby><cites>FETCH-LOGICAL-c408t-d32ca1eca7e8d2946e707ee9412618ba786f11aa33453655b8525aa3f81d7fb03</cites><orcidid>0000-0003-3174-2392 ; 0000-0002-1709-4491 ; 0000-0003-1205-7736</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9672115$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Kim, Seokgoo</creatorcontrib><creatorcontrib>Park, Hyung Jun</creatorcontrib><creatorcontrib>Seo, Yun-Ho</creatorcontrib><creatorcontrib>Choi, Joo-Ho</creatorcontrib><title>A Robust Health Indicator for Rotating Machinery Under Time-Varying Operating Conditions</title><title>IEEE access</title><addtitle>Access</addtitle><description>Bearing is an essential component whose failure leads to costly downtime in operation. Therefore, it is important to establish an accurate health indicator (HI), using which the remaining useful life can be reliably predicted. To date, most of the health assessment for bearing have been focused on the constant operating condition while in practice, it operates under various operating conditions (rotating speed and loading). Motivated by this, this paper proposes a method to extract robust HI which undergoes variable operating conditions. The idea is to cluster the operating conditions regimes, and develop HI based on the Mahalanobis distance using the optimal features subset in each regime. To validate the effectiveness, bearing run-to-fail experiment is performed under variable operating condition, and proposed HI is compared with the traditional statistical features. The remaining useful life is predicted by the data augmentation prognostics algorithm which was to overcome data deficiency problem.</description><subject>Aerospace engineering</subject><subject>Algorithms</subject><subject>bearing</subject><subject>Correlation</subject><subject>Downtime</subject><subject>Feature extraction</subject><subject>Health indicator</subject><subject>Loading</subject><subject>Machinery</subject><subject>mahalanobis distance</subject><subject>prognostics</subject><subject>Prognostics and health management</subject><subject>Robustness</subject><subject>Rotating machinery</subject><subject>Useful life</subject><subject>variable operating conditions</subject><subject>Vibrations</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUUtLAzEQXkRBUX-BlwXPWzN577EsPgqK4AtvId2dtCl1U7PpwX9v6pZiIGQyme9BvqK4AjIBIPXNtGluX18nlFA6YcCJEuKoOKMg64oJJo__1afF5TCsSF46t4Q6Kz6n5UuYb4dUPqBdp2U56zvf2hRi6fJ-Cckm3y_KJ9sufY_xp3zvO4zlm__C6sPGn93j8wbjONaEDE8-9MNFceLsesDL_XlevN_dvjUP1ePz_ayZPlYtJzpVHaOtBWytQt3RmktURCHWHKgEPbdKSwdgLWM8-xdirgUV-eo0dMrNCTsvZiNvF-zKbKL_yqZMsN78NUJcGBuTb9doNKi6Jc4KCYRrENblj8giWIPWjsvMdT1ybWL43uKQzCpsY5_tGyopEMm52imycaqNYRgiuoMqELNLxIyJmF0iZp9IRl2NKI-IB0QtFQUQ7Bcmx4V4</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Kim, Seokgoo</creator><creator>Park, Hyung Jun</creator><creator>Seo, Yun-Ho</creator><creator>Choi, Joo-Ho</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3174-2392</orcidid><orcidid>https://orcid.org/0000-0002-1709-4491</orcidid><orcidid>https://orcid.org/0000-0003-1205-7736</orcidid></search><sort><creationdate>2022</creationdate><title>A Robust Health Indicator for Rotating Machinery Under Time-Varying Operating Conditions</title><author>Kim, Seokgoo ; Park, Hyung Jun ; Seo, Yun-Ho ; Choi, Joo-Ho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-d32ca1eca7e8d2946e707ee9412618ba786f11aa33453655b8525aa3f81d7fb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aerospace engineering</topic><topic>Algorithms</topic><topic>bearing</topic><topic>Correlation</topic><topic>Downtime</topic><topic>Feature extraction</topic><topic>Health indicator</topic><topic>Loading</topic><topic>Machinery</topic><topic>mahalanobis distance</topic><topic>prognostics</topic><topic>Prognostics and health management</topic><topic>Robustness</topic><topic>Rotating machinery</topic><topic>Useful life</topic><topic>variable operating conditions</topic><topic>Vibrations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Seokgoo</creatorcontrib><creatorcontrib>Park, Hyung Jun</creatorcontrib><creatorcontrib>Seo, Yun-Ho</creatorcontrib><creatorcontrib>Choi, Joo-Ho</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Seokgoo</au><au>Park, Hyung Jun</au><au>Seo, Yun-Ho</au><au>Choi, Joo-Ho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Robust Health Indicator for Rotating Machinery Under Time-Varying Operating Conditions</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>4993</spage><epage>5001</epage><pages>4993-5001</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Bearing is an essential component whose failure leads to costly downtime in operation. Therefore, it is important to establish an accurate health indicator (HI), using which the remaining useful life can be reliably predicted. To date, most of the health assessment for bearing have been focused on the constant operating condition while in practice, it operates under various operating conditions (rotating speed and loading). Motivated by this, this paper proposes a method to extract robust HI which undergoes variable operating conditions. The idea is to cluster the operating conditions regimes, and develop HI based on the Mahalanobis distance using the optimal features subset in each regime. To validate the effectiveness, bearing run-to-fail experiment is performed under variable operating condition, and proposed HI is compared with the traditional statistical features. The remaining useful life is predicted by the data augmentation prognostics algorithm which was to overcome data deficiency problem.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3140755</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3174-2392</orcidid><orcidid>https://orcid.org/0000-0002-1709-4491</orcidid><orcidid>https://orcid.org/0000-0003-1205-7736</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2022, Vol.10, p.4993-5001
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_9672115
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Aerospace engineering
Algorithms
bearing
Correlation
Downtime
Feature extraction
Health indicator
Loading
Machinery
mahalanobis distance
prognostics
Prognostics and health management
Robustness
Rotating machinery
Useful life
variable operating conditions
Vibrations
title A Robust Health Indicator for Rotating Machinery Under Time-Varying Operating Conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T22%3A36%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Robust%20Health%20Indicator%20for%20Rotating%20Machinery%20Under%20Time-Varying%20Operating%20Conditions&rft.jtitle=IEEE%20access&rft.au=Kim,%20Seokgoo&rft.date=2022&rft.volume=10&rft.spage=4993&rft.epage=5001&rft.pages=4993-5001&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3140755&rft_dat=%3Cproquest_ieee_%3E2621064470%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2621064470&rft_id=info:pmid/&rft_ieee_id=9672115&rft_doaj_id=oai_doaj_org_article_8179c0fa56104815af00018be9188f46&rfr_iscdi=true