Distortion Convolution Module for Semantic Segmentation of Panoramic Images Based on the Image-Forming Principle

Semantic segmentation of panoramic images plays a key role in many applications, such as security monitoring and autonomous driving. With the rapid development of deep learning, some deep networks are developed to segment panoramic images semantically. However, these networks don't have the spe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement 2022, Vol.71, p.1-12
Hauptverfasser: Hu, Xing, An, Yi, Shao, Cheng, Hu, Huosheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue
container_start_page 1
container_title IEEE transactions on instrumentation and measurement
container_volume 71
creator Hu, Xing
An, Yi
Shao, Cheng
Hu, Huosheng
description Semantic segmentation of panoramic images plays a key role in many applications, such as security monitoring and autonomous driving. With the rapid development of deep learning, some deep networks are developed to segment panoramic images semantically. However, these networks don't have the special modules to correct the image distortion of panoramic images according to the distortion principle, which makes feature extraction unreasonable during the convolution because of the image distortion. This article proposes a novel semantic segmentation network for panoramic images of outdoor scenes based on the distortion convolution. The network contains an encoder and a decoder. The encoder consists of a distortion convolutional module (DCM), a residual network, and an atrous spatial pyramid pooling (ASPP). The DCM is developed to correct the image distortion according to the image-forming principle. In the decoder, a deep feature aggregation network (DFAN) is designed to fully fuse low-level features with high-level features. The proposed network introduces the DCM and DFAN into the semantic segmentation of panoramic images, which improves the segmentation accuracy. The experiments demonstrate that the proposed network has good performance for different outdoor scenes and plays an important role in measurement applications.
doi_str_mv 10.1109/TIM.2021.3139710
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9667494</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9667494</ieee_id><sourcerecordid>2631961750</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-b7fd46d5157998c86a6f3b3031d6d087f306b0e23922bf44daa4922ddb2e010b3</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhYMoOKfvgi8FnztvkjZpHnU6HWw4cD6XtElnR5vUpBX892br8Oke7jnnXvgQusUwwxjEw3a5nhEgeEYxFRzDGZrgNOWxYIycowkAzmKRpOwSXXm_BwDOEj5B3XPte-v62ppobs2PbYajXls1NDqqrIs-dCtNX5dB7FptenkM2CraSGOdbIOzbOVO--hJeq2iYPZfetzFC-va2uyijatNWXeNvkYXlWy8vjnNKfpcvGznb_Hq_XU5f1zFJRG4jwteqYSpFKdciKzMmGQVLShQrJiCjFcUWAGaUEFIUSWJkjIJUqmCaMBQ0Cm6H-92zn4P2vf53g7OhJc5YRQLhnkKIQVjqnTWe6ervHN1K91vjiE_cM0D1_zANT9xDZW7sVJrrf_jATNPREL_AJV_dHE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2631961750</pqid></control><display><type>article</type><title>Distortion Convolution Module for Semantic Segmentation of Panoramic Images Based on the Image-Forming Principle</title><source>IEEE Xplore (Online service)</source><creator>Hu, Xing ; An, Yi ; Shao, Cheng ; Hu, Huosheng</creator><creatorcontrib>Hu, Xing ; An, Yi ; Shao, Cheng ; Hu, Huosheng</creatorcontrib><description>Semantic segmentation of panoramic images plays a key role in many applications, such as security monitoring and autonomous driving. With the rapid development of deep learning, some deep networks are developed to segment panoramic images semantically. However, these networks don't have the special modules to correct the image distortion of panoramic images according to the distortion principle, which makes feature extraction unreasonable during the convolution because of the image distortion. This article proposes a novel semantic segmentation network for panoramic images of outdoor scenes based on the distortion convolution. The network contains an encoder and a decoder. The encoder consists of a distortion convolutional module (DCM), a residual network, and an atrous spatial pyramid pooling (ASPP). The DCM is developed to correct the image distortion according to the image-forming principle. In the decoder, a deep feature aggregation network (DFAN) is designed to fully fuse low-level features with high-level features. The proposed network introduces the DCM and DFAN into the semantic segmentation of panoramic images, which improves the segmentation accuracy. The experiments demonstrate that the proposed network has good performance for different outdoor scenes and plays an important role in measurement applications.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2021.3139710</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Cameras ; Coders ; Convolution ; Decoding ; Deep network ; Distortion ; distortion convolution ; Feature extraction ; image distortion correction ; Image segmentation ; Machine learning ; Modules ; panoramic images ; Point cloud compression ; Semantic segmentation ; Semantics</subject><ispartof>IEEE transactions on instrumentation and measurement, 2022, Vol.71, p.1-12</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-b7fd46d5157998c86a6f3b3031d6d087f306b0e23922bf44daa4922ddb2e010b3</citedby><cites>FETCH-LOGICAL-c291t-b7fd46d5157998c86a6f3b3031d6d087f306b0e23922bf44daa4922ddb2e010b3</cites><orcidid>0000-0002-7845-0613 ; 0000-0002-2667-122X ; 0000-0002-3410-8322 ; 0000-0001-5797-1412</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9667494$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,4010,27904,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9667494$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hu, Xing</creatorcontrib><creatorcontrib>An, Yi</creatorcontrib><creatorcontrib>Shao, Cheng</creatorcontrib><creatorcontrib>Hu, Huosheng</creatorcontrib><title>Distortion Convolution Module for Semantic Segmentation of Panoramic Images Based on the Image-Forming Principle</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>Semantic segmentation of panoramic images plays a key role in many applications, such as security monitoring and autonomous driving. With the rapid development of deep learning, some deep networks are developed to segment panoramic images semantically. However, these networks don't have the special modules to correct the image distortion of panoramic images according to the distortion principle, which makes feature extraction unreasonable during the convolution because of the image distortion. This article proposes a novel semantic segmentation network for panoramic images of outdoor scenes based on the distortion convolution. The network contains an encoder and a decoder. The encoder consists of a distortion convolutional module (DCM), a residual network, and an atrous spatial pyramid pooling (ASPP). The DCM is developed to correct the image distortion according to the image-forming principle. In the decoder, a deep feature aggregation network (DFAN) is designed to fully fuse low-level features with high-level features. The proposed network introduces the DCM and DFAN into the semantic segmentation of panoramic images, which improves the segmentation accuracy. The experiments demonstrate that the proposed network has good performance for different outdoor scenes and plays an important role in measurement applications.</description><subject>Cameras</subject><subject>Coders</subject><subject>Convolution</subject><subject>Decoding</subject><subject>Deep network</subject><subject>Distortion</subject><subject>distortion convolution</subject><subject>Feature extraction</subject><subject>image distortion correction</subject><subject>Image segmentation</subject><subject>Machine learning</subject><subject>Modules</subject><subject>panoramic images</subject><subject>Point cloud compression</subject><subject>Semantic segmentation</subject><subject>Semantics</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFLwzAUhYMoOKfvgi8FnztvkjZpHnU6HWw4cD6XtElnR5vUpBX892br8Oke7jnnXvgQusUwwxjEw3a5nhEgeEYxFRzDGZrgNOWxYIycowkAzmKRpOwSXXm_BwDOEj5B3XPte-v62ppobs2PbYajXls1NDqqrIs-dCtNX5dB7FptenkM2CraSGOdbIOzbOVO--hJeq2iYPZfetzFC-va2uyijatNWXeNvkYXlWy8vjnNKfpcvGznb_Hq_XU5f1zFJRG4jwteqYSpFKdciKzMmGQVLShQrJiCjFcUWAGaUEFIUSWJkjIJUqmCaMBQ0Cm6H-92zn4P2vf53g7OhJc5YRQLhnkKIQVjqnTWe6ervHN1K91vjiE_cM0D1_zANT9xDZW7sVJrrf_jATNPREL_AJV_dHE</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Hu, Xing</creator><creator>An, Yi</creator><creator>Shao, Cheng</creator><creator>Hu, Huosheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7845-0613</orcidid><orcidid>https://orcid.org/0000-0002-2667-122X</orcidid><orcidid>https://orcid.org/0000-0002-3410-8322</orcidid><orcidid>https://orcid.org/0000-0001-5797-1412</orcidid></search><sort><creationdate>2022</creationdate><title>Distortion Convolution Module for Semantic Segmentation of Panoramic Images Based on the Image-Forming Principle</title><author>Hu, Xing ; An, Yi ; Shao, Cheng ; Hu, Huosheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-b7fd46d5157998c86a6f3b3031d6d087f306b0e23922bf44daa4922ddb2e010b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cameras</topic><topic>Coders</topic><topic>Convolution</topic><topic>Decoding</topic><topic>Deep network</topic><topic>Distortion</topic><topic>distortion convolution</topic><topic>Feature extraction</topic><topic>image distortion correction</topic><topic>Image segmentation</topic><topic>Machine learning</topic><topic>Modules</topic><topic>panoramic images</topic><topic>Point cloud compression</topic><topic>Semantic segmentation</topic><topic>Semantics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Xing</creatorcontrib><creatorcontrib>An, Yi</creatorcontrib><creatorcontrib>Shao, Cheng</creatorcontrib><creatorcontrib>Hu, Huosheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hu, Xing</au><au>An, Yi</au><au>Shao, Cheng</au><au>Hu, Huosheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distortion Convolution Module for Semantic Segmentation of Panoramic Images Based on the Image-Forming Principle</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2022</date><risdate>2022</risdate><volume>71</volume><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>Semantic segmentation of panoramic images plays a key role in many applications, such as security monitoring and autonomous driving. With the rapid development of deep learning, some deep networks are developed to segment panoramic images semantically. However, these networks don't have the special modules to correct the image distortion of panoramic images according to the distortion principle, which makes feature extraction unreasonable during the convolution because of the image distortion. This article proposes a novel semantic segmentation network for panoramic images of outdoor scenes based on the distortion convolution. The network contains an encoder and a decoder. The encoder consists of a distortion convolutional module (DCM), a residual network, and an atrous spatial pyramid pooling (ASPP). The DCM is developed to correct the image distortion according to the image-forming principle. In the decoder, a deep feature aggregation network (DFAN) is designed to fully fuse low-level features with high-level features. The proposed network introduces the DCM and DFAN into the semantic segmentation of panoramic images, which improves the segmentation accuracy. The experiments demonstrate that the proposed network has good performance for different outdoor scenes and plays an important role in measurement applications.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2021.3139710</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7845-0613</orcidid><orcidid>https://orcid.org/0000-0002-2667-122X</orcidid><orcidid>https://orcid.org/0000-0002-3410-8322</orcidid><orcidid>https://orcid.org/0000-0001-5797-1412</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9456
ispartof IEEE transactions on instrumentation and measurement, 2022, Vol.71, p.1-12
issn 0018-9456
1557-9662
language eng
recordid cdi_ieee_primary_9667494
source IEEE Xplore (Online service)
subjects Cameras
Coders
Convolution
Decoding
Deep network
Distortion
distortion convolution
Feature extraction
image distortion correction
Image segmentation
Machine learning
Modules
panoramic images
Point cloud compression
Semantic segmentation
Semantics
title Distortion Convolution Module for Semantic Segmentation of Panoramic Images Based on the Image-Forming Principle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T17%3A37%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distortion%20Convolution%20Module%20for%20Semantic%20Segmentation%20of%20Panoramic%20Images%20Based%20on%20the%20Image-Forming%20Principle&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Hu,%20Xing&rft.date=2022&rft.volume=71&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2021.3139710&rft_dat=%3Cproquest_RIE%3E2631961750%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2631961750&rft_id=info:pmid/&rft_ieee_id=9667494&rfr_iscdi=true