Distortion Convolution Module for Semantic Segmentation of Panoramic Images Based on the Image-Forming Principle
Semantic segmentation of panoramic images plays a key role in many applications, such as security monitoring and autonomous driving. With the rapid development of deep learning, some deep networks are developed to segment panoramic images semantically. However, these networks don't have the spe...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on instrumentation and measurement 2022, Vol.71, p.1-12 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on instrumentation and measurement |
container_volume | 71 |
creator | Hu, Xing An, Yi Shao, Cheng Hu, Huosheng |
description | Semantic segmentation of panoramic images plays a key role in many applications, such as security monitoring and autonomous driving. With the rapid development of deep learning, some deep networks are developed to segment panoramic images semantically. However, these networks don't have the special modules to correct the image distortion of panoramic images according to the distortion principle, which makes feature extraction unreasonable during the convolution because of the image distortion. This article proposes a novel semantic segmentation network for panoramic images of outdoor scenes based on the distortion convolution. The network contains an encoder and a decoder. The encoder consists of a distortion convolutional module (DCM), a residual network, and an atrous spatial pyramid pooling (ASPP). The DCM is developed to correct the image distortion according to the image-forming principle. In the decoder, a deep feature aggregation network (DFAN) is designed to fully fuse low-level features with high-level features. The proposed network introduces the DCM and DFAN into the semantic segmentation of panoramic images, which improves the segmentation accuracy. The experiments demonstrate that the proposed network has good performance for different outdoor scenes and plays an important role in measurement applications. |
doi_str_mv | 10.1109/TIM.2021.3139710 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9667494</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9667494</ieee_id><sourcerecordid>2631961750</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-b7fd46d5157998c86a6f3b3031d6d087f306b0e23922bf44daa4922ddb2e010b3</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhYMoOKfvgi8FnztvkjZpHnU6HWw4cD6XtElnR5vUpBX892br8Oke7jnnXvgQusUwwxjEw3a5nhEgeEYxFRzDGZrgNOWxYIycowkAzmKRpOwSXXm_BwDOEj5B3XPte-v62ppobs2PbYajXls1NDqqrIs-dCtNX5dB7FptenkM2CraSGOdbIOzbOVO--hJeq2iYPZfetzFC-va2uyijatNWXeNvkYXlWy8vjnNKfpcvGznb_Hq_XU5f1zFJRG4jwteqYSpFKdciKzMmGQVLShQrJiCjFcUWAGaUEFIUSWJkjIJUqmCaMBQ0Cm6H-92zn4P2vf53g7OhJc5YRQLhnkKIQVjqnTWe6ervHN1K91vjiE_cM0D1_zANT9xDZW7sVJrrf_jATNPREL_AJV_dHE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2631961750</pqid></control><display><type>article</type><title>Distortion Convolution Module for Semantic Segmentation of Panoramic Images Based on the Image-Forming Principle</title><source>IEEE Xplore (Online service)</source><creator>Hu, Xing ; An, Yi ; Shao, Cheng ; Hu, Huosheng</creator><creatorcontrib>Hu, Xing ; An, Yi ; Shao, Cheng ; Hu, Huosheng</creatorcontrib><description>Semantic segmentation of panoramic images plays a key role in many applications, such as security monitoring and autonomous driving. With the rapid development of deep learning, some deep networks are developed to segment panoramic images semantically. However, these networks don't have the special modules to correct the image distortion of panoramic images according to the distortion principle, which makes feature extraction unreasonable during the convolution because of the image distortion. This article proposes a novel semantic segmentation network for panoramic images of outdoor scenes based on the distortion convolution. The network contains an encoder and a decoder. The encoder consists of a distortion convolutional module (DCM), a residual network, and an atrous spatial pyramid pooling (ASPP). The DCM is developed to correct the image distortion according to the image-forming principle. In the decoder, a deep feature aggregation network (DFAN) is designed to fully fuse low-level features with high-level features. The proposed network introduces the DCM and DFAN into the semantic segmentation of panoramic images, which improves the segmentation accuracy. The experiments demonstrate that the proposed network has good performance for different outdoor scenes and plays an important role in measurement applications.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2021.3139710</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Cameras ; Coders ; Convolution ; Decoding ; Deep network ; Distortion ; distortion convolution ; Feature extraction ; image distortion correction ; Image segmentation ; Machine learning ; Modules ; panoramic images ; Point cloud compression ; Semantic segmentation ; Semantics</subject><ispartof>IEEE transactions on instrumentation and measurement, 2022, Vol.71, p.1-12</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-b7fd46d5157998c86a6f3b3031d6d087f306b0e23922bf44daa4922ddb2e010b3</citedby><cites>FETCH-LOGICAL-c291t-b7fd46d5157998c86a6f3b3031d6d087f306b0e23922bf44daa4922ddb2e010b3</cites><orcidid>0000-0002-7845-0613 ; 0000-0002-2667-122X ; 0000-0002-3410-8322 ; 0000-0001-5797-1412</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9667494$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,4010,27904,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9667494$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hu, Xing</creatorcontrib><creatorcontrib>An, Yi</creatorcontrib><creatorcontrib>Shao, Cheng</creatorcontrib><creatorcontrib>Hu, Huosheng</creatorcontrib><title>Distortion Convolution Module for Semantic Segmentation of Panoramic Images Based on the Image-Forming Principle</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>Semantic segmentation of panoramic images plays a key role in many applications, such as security monitoring and autonomous driving. With the rapid development of deep learning, some deep networks are developed to segment panoramic images semantically. However, these networks don't have the special modules to correct the image distortion of panoramic images according to the distortion principle, which makes feature extraction unreasonable during the convolution because of the image distortion. This article proposes a novel semantic segmentation network for panoramic images of outdoor scenes based on the distortion convolution. The network contains an encoder and a decoder. The encoder consists of a distortion convolutional module (DCM), a residual network, and an atrous spatial pyramid pooling (ASPP). The DCM is developed to correct the image distortion according to the image-forming principle. In the decoder, a deep feature aggregation network (DFAN) is designed to fully fuse low-level features with high-level features. The proposed network introduces the DCM and DFAN into the semantic segmentation of panoramic images, which improves the segmentation accuracy. The experiments demonstrate that the proposed network has good performance for different outdoor scenes and plays an important role in measurement applications.</description><subject>Cameras</subject><subject>Coders</subject><subject>Convolution</subject><subject>Decoding</subject><subject>Deep network</subject><subject>Distortion</subject><subject>distortion convolution</subject><subject>Feature extraction</subject><subject>image distortion correction</subject><subject>Image segmentation</subject><subject>Machine learning</subject><subject>Modules</subject><subject>panoramic images</subject><subject>Point cloud compression</subject><subject>Semantic segmentation</subject><subject>Semantics</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFLwzAUhYMoOKfvgi8FnztvkjZpHnU6HWw4cD6XtElnR5vUpBX892br8Oke7jnnXvgQusUwwxjEw3a5nhEgeEYxFRzDGZrgNOWxYIycowkAzmKRpOwSXXm_BwDOEj5B3XPte-v62ppobs2PbYajXls1NDqqrIs-dCtNX5dB7FptenkM2CraSGOdbIOzbOVO--hJeq2iYPZfetzFC-va2uyijatNWXeNvkYXlWy8vjnNKfpcvGznb_Hq_XU5f1zFJRG4jwteqYSpFKdciKzMmGQVLShQrJiCjFcUWAGaUEFIUSWJkjIJUqmCaMBQ0Cm6H-92zn4P2vf53g7OhJc5YRQLhnkKIQVjqnTWe6ervHN1K91vjiE_cM0D1_zANT9xDZW7sVJrrf_jATNPREL_AJV_dHE</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Hu, Xing</creator><creator>An, Yi</creator><creator>Shao, Cheng</creator><creator>Hu, Huosheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7845-0613</orcidid><orcidid>https://orcid.org/0000-0002-2667-122X</orcidid><orcidid>https://orcid.org/0000-0002-3410-8322</orcidid><orcidid>https://orcid.org/0000-0001-5797-1412</orcidid></search><sort><creationdate>2022</creationdate><title>Distortion Convolution Module for Semantic Segmentation of Panoramic Images Based on the Image-Forming Principle</title><author>Hu, Xing ; An, Yi ; Shao, Cheng ; Hu, Huosheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-b7fd46d5157998c86a6f3b3031d6d087f306b0e23922bf44daa4922ddb2e010b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cameras</topic><topic>Coders</topic><topic>Convolution</topic><topic>Decoding</topic><topic>Deep network</topic><topic>Distortion</topic><topic>distortion convolution</topic><topic>Feature extraction</topic><topic>image distortion correction</topic><topic>Image segmentation</topic><topic>Machine learning</topic><topic>Modules</topic><topic>panoramic images</topic><topic>Point cloud compression</topic><topic>Semantic segmentation</topic><topic>Semantics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Xing</creatorcontrib><creatorcontrib>An, Yi</creatorcontrib><creatorcontrib>Shao, Cheng</creatorcontrib><creatorcontrib>Hu, Huosheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hu, Xing</au><au>An, Yi</au><au>Shao, Cheng</au><au>Hu, Huosheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distortion Convolution Module for Semantic Segmentation of Panoramic Images Based on the Image-Forming Principle</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2022</date><risdate>2022</risdate><volume>71</volume><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>Semantic segmentation of panoramic images plays a key role in many applications, such as security monitoring and autonomous driving. With the rapid development of deep learning, some deep networks are developed to segment panoramic images semantically. However, these networks don't have the special modules to correct the image distortion of panoramic images according to the distortion principle, which makes feature extraction unreasonable during the convolution because of the image distortion. This article proposes a novel semantic segmentation network for panoramic images of outdoor scenes based on the distortion convolution. The network contains an encoder and a decoder. The encoder consists of a distortion convolutional module (DCM), a residual network, and an atrous spatial pyramid pooling (ASPP). The DCM is developed to correct the image distortion according to the image-forming principle. In the decoder, a deep feature aggregation network (DFAN) is designed to fully fuse low-level features with high-level features. The proposed network introduces the DCM and DFAN into the semantic segmentation of panoramic images, which improves the segmentation accuracy. The experiments demonstrate that the proposed network has good performance for different outdoor scenes and plays an important role in measurement applications.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2021.3139710</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7845-0613</orcidid><orcidid>https://orcid.org/0000-0002-2667-122X</orcidid><orcidid>https://orcid.org/0000-0002-3410-8322</orcidid><orcidid>https://orcid.org/0000-0001-5797-1412</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9456 |
ispartof | IEEE transactions on instrumentation and measurement, 2022, Vol.71, p.1-12 |
issn | 0018-9456 1557-9662 |
language | eng |
recordid | cdi_ieee_primary_9667494 |
source | IEEE Xplore (Online service) |
subjects | Cameras Coders Convolution Decoding Deep network Distortion distortion convolution Feature extraction image distortion correction Image segmentation Machine learning Modules panoramic images Point cloud compression Semantic segmentation Semantics |
title | Distortion Convolution Module for Semantic Segmentation of Panoramic Images Based on the Image-Forming Principle |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T17%3A37%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distortion%20Convolution%20Module%20for%20Semantic%20Segmentation%20of%20Panoramic%20Images%20Based%20on%20the%20Image-Forming%20Principle&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Hu,%20Xing&rft.date=2022&rft.volume=71&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2021.3139710&rft_dat=%3Cproquest_RIE%3E2631961750%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2631961750&rft_id=info:pmid/&rft_ieee_id=9667494&rfr_iscdi=true |