Deep Learning in Visual Tracking: A Review
Deep learning (DL) has made breakthroughs in many computer vision tasks and also in visual tracking. From the beginning of the research on the automatic acquisition of high abstract feature representation, DL has gone deep into all aspects of tracking to date, to name a few, similarity metric, data...
Gespeichert in:
Veröffentlicht in: | IEEE transaction on neural networks and learning systems 2023-09, Vol.34 (9), p.5497-5516 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5516 |
---|---|
container_issue | 9 |
container_start_page | 5497 |
container_title | IEEE transaction on neural networks and learning systems |
container_volume | 34 |
creator | Jiao, Licheng Wang, Dan Bai, Yidong Chen, Puhua Liu, Fang |
description | Deep learning (DL) has made breakthroughs in many computer vision tasks and also in visual tracking. From the beginning of the research on the automatic acquisition of high abstract feature representation, DL has gone deep into all aspects of tracking to date, to name a few, similarity metric, data association, and bounding box estimation. Also, pure DL-based trackers have obtained the state-of-the-art performance after the community's constant research. We believe that it is time to comprehensively review the development of DL research in visual tracking. In this article, we overview the critical improvements brought to the field by DL: deep feature representations, network architecture, and four crucial issues in visual tracking (spatiotemporal information integration, target-specific classification, target information update, and bounding box estimation). The scope of the survey of DL-based tracking covers two primary subtasks for the first time, single-object tracking and multiple-object tracking. Also, we analyze the performance of DL-based approaches and give meaningful conclusions. Finally, we provide several promising directions and tasks in visual tracking and relevant fields. |
doi_str_mv | 10.1109/TNNLS.2021.3136907 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9666461</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9666461</ieee_id><sourcerecordid>2859710851</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-aae4ea10c749baf17621ce8d57a62241c3b86b0a0074dea901fc95cafe126ff83</originalsourceid><addsrcrecordid>eNpdkF1LwzAUhoMoTub-gIIUvBGhMydp08S7MT-hTNAp3oU0O5XOrpvJqvjvzdzchblJOOd5X8JDyBHQPgBVF-PRKH_qM8qgz4ELRbMdcsBAsJhxKXe37-y1Q3reT2k4gqYiUfukwxMlJEg4IOdXiIsoR-OaqnmLqiZ6qXxr6mjsjH0Po8toED3iZ4Vfh2SvNLXH3ubukueb6_HwLs4fbu-Hgzy2PIVlbAwmaIDaLFGFKSETDCzKSZoZwVgClhdSFNRQmiUTNIpCaVVqTYnARFlK3iVn696Fm3-06Jd6VnmLdW0anLdeMwGpCrXAAnr6D53OW9eE32kmU5UBlSkEiq0p6-beOyz1wlUz4741UL2SqX9l6pVMvZEZQieb6raY4WQb-VMXgOM1UCHidq2EEIkA_gMf2XWw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2859710851</pqid></control><display><type>article</type><title>Deep Learning in Visual Tracking: A Review</title><source>IEEE Electronic Library (IEL)</source><creator>Jiao, Licheng ; Wang, Dan ; Bai, Yidong ; Chen, Puhua ; Liu, Fang</creator><creatorcontrib>Jiao, Licheng ; Wang, Dan ; Bai, Yidong ; Chen, Puhua ; Liu, Fang</creatorcontrib><description>Deep learning (DL) has made breakthroughs in many computer vision tasks and also in visual tracking. From the beginning of the research on the automatic acquisition of high abstract feature representation, DL has gone deep into all aspects of tracking to date, to name a few, similarity metric, data association, and bounding box estimation. Also, pure DL-based trackers have obtained the state-of-the-art performance after the community's constant research. We believe that it is time to comprehensively review the development of DL research in visual tracking. In this article, we overview the critical improvements brought to the field by DL: deep feature representations, network architecture, and four crucial issues in visual tracking (spatiotemporal information integration, target-specific classification, target information update, and bounding box estimation). The scope of the survey of DL-based tracking covers two primary subtasks for the first time, single-object tracking and multiple-object tracking. Also, we analyze the performance of DL-based approaches and give meaningful conclusions. Finally, we provide several promising directions and tasks in visual tracking and relevant fields.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2021.3136907</identifier><identifier>PMID: 34968181</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Computer architecture ; Computer vision ; Deep learning ; Deep learning (DL) ; Feature extraction ; Multiple target tracking ; multiple-object tracking (MOT) ; Nonhomogeneous media ; Optical tracking ; Representations ; single-object tracking (SOT) ; Target tracking ; Task analysis ; Tracking ; Trajectory ; Visual discrimination learning ; Visual fields ; Visual tasks ; Visualization</subject><ispartof>IEEE transaction on neural networks and learning systems, 2023-09, Vol.34 (9), p.5497-5516</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-aae4ea10c749baf17621ce8d57a62241c3b86b0a0074dea901fc95cafe126ff83</citedby><cites>FETCH-LOGICAL-c351t-aae4ea10c749baf17621ce8d57a62241c3b86b0a0074dea901fc95cafe126ff83</cites><orcidid>0000-0002-5832-1494 ; 0000-0001-5472-1426 ; 0000-0002-5669-9354 ; 0000-0003-3354-9617</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9666461$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9666461$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34968181$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiao, Licheng</creatorcontrib><creatorcontrib>Wang, Dan</creatorcontrib><creatorcontrib>Bai, Yidong</creatorcontrib><creatorcontrib>Chen, Puhua</creatorcontrib><creatorcontrib>Liu, Fang</creatorcontrib><title>Deep Learning in Visual Tracking: A Review</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>Deep learning (DL) has made breakthroughs in many computer vision tasks and also in visual tracking. From the beginning of the research on the automatic acquisition of high abstract feature representation, DL has gone deep into all aspects of tracking to date, to name a few, similarity metric, data association, and bounding box estimation. Also, pure DL-based trackers have obtained the state-of-the-art performance after the community's constant research. We believe that it is time to comprehensively review the development of DL research in visual tracking. In this article, we overview the critical improvements brought to the field by DL: deep feature representations, network architecture, and four crucial issues in visual tracking (spatiotemporal information integration, target-specific classification, target information update, and bounding box estimation). The scope of the survey of DL-based tracking covers two primary subtasks for the first time, single-object tracking and multiple-object tracking. Also, we analyze the performance of DL-based approaches and give meaningful conclusions. Finally, we provide several promising directions and tasks in visual tracking and relevant fields.</description><subject>Computer architecture</subject><subject>Computer vision</subject><subject>Deep learning</subject><subject>Deep learning (DL)</subject><subject>Feature extraction</subject><subject>Multiple target tracking</subject><subject>multiple-object tracking (MOT)</subject><subject>Nonhomogeneous media</subject><subject>Optical tracking</subject><subject>Representations</subject><subject>single-object tracking (SOT)</subject><subject>Target tracking</subject><subject>Task analysis</subject><subject>Tracking</subject><subject>Trajectory</subject><subject>Visual discrimination learning</subject><subject>Visual fields</subject><subject>Visual tasks</subject><subject>Visualization</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkF1LwzAUhoMoTub-gIIUvBGhMydp08S7MT-hTNAp3oU0O5XOrpvJqvjvzdzchblJOOd5X8JDyBHQPgBVF-PRKH_qM8qgz4ELRbMdcsBAsJhxKXe37-y1Q3reT2k4gqYiUfukwxMlJEg4IOdXiIsoR-OaqnmLqiZ6qXxr6mjsjH0Po8toED3iZ4Vfh2SvNLXH3ubukueb6_HwLs4fbu-Hgzy2PIVlbAwmaIDaLFGFKSETDCzKSZoZwVgClhdSFNRQmiUTNIpCaVVqTYnARFlK3iVn696Fm3-06Jd6VnmLdW0anLdeMwGpCrXAAnr6D53OW9eE32kmU5UBlSkEiq0p6-beOyz1wlUz4741UL2SqX9l6pVMvZEZQieb6raY4WQb-VMXgOM1UCHidq2EEIkA_gMf2XWw</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Jiao, Licheng</creator><creator>Wang, Dan</creator><creator>Bai, Yidong</creator><creator>Chen, Puhua</creator><creator>Liu, Fang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5832-1494</orcidid><orcidid>https://orcid.org/0000-0001-5472-1426</orcidid><orcidid>https://orcid.org/0000-0002-5669-9354</orcidid><orcidid>https://orcid.org/0000-0003-3354-9617</orcidid></search><sort><creationdate>20230901</creationdate><title>Deep Learning in Visual Tracking: A Review</title><author>Jiao, Licheng ; Wang, Dan ; Bai, Yidong ; Chen, Puhua ; Liu, Fang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-aae4ea10c749baf17621ce8d57a62241c3b86b0a0074dea901fc95cafe126ff83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Computer architecture</topic><topic>Computer vision</topic><topic>Deep learning</topic><topic>Deep learning (DL)</topic><topic>Feature extraction</topic><topic>Multiple target tracking</topic><topic>multiple-object tracking (MOT)</topic><topic>Nonhomogeneous media</topic><topic>Optical tracking</topic><topic>Representations</topic><topic>single-object tracking (SOT)</topic><topic>Target tracking</topic><topic>Task analysis</topic><topic>Tracking</topic><topic>Trajectory</topic><topic>Visual discrimination learning</topic><topic>Visual fields</topic><topic>Visual tasks</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Jiao, Licheng</creatorcontrib><creatorcontrib>Wang, Dan</creatorcontrib><creatorcontrib>Bai, Yidong</creatorcontrib><creatorcontrib>Chen, Puhua</creatorcontrib><creatorcontrib>Liu, Fang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jiao, Licheng</au><au>Wang, Dan</au><au>Bai, Yidong</au><au>Chen, Puhua</au><au>Liu, Fang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Learning in Visual Tracking: A Review</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2023-09-01</date><risdate>2023</risdate><volume>34</volume><issue>9</issue><spage>5497</spage><epage>5516</epage><pages>5497-5516</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>Deep learning (DL) has made breakthroughs in many computer vision tasks and also in visual tracking. From the beginning of the research on the automatic acquisition of high abstract feature representation, DL has gone deep into all aspects of tracking to date, to name a few, similarity metric, data association, and bounding box estimation. Also, pure DL-based trackers have obtained the state-of-the-art performance after the community's constant research. We believe that it is time to comprehensively review the development of DL research in visual tracking. In this article, we overview the critical improvements brought to the field by DL: deep feature representations, network architecture, and four crucial issues in visual tracking (spatiotemporal information integration, target-specific classification, target information update, and bounding box estimation). The scope of the survey of DL-based tracking covers two primary subtasks for the first time, single-object tracking and multiple-object tracking. Also, we analyze the performance of DL-based approaches and give meaningful conclusions. Finally, we provide several promising directions and tasks in visual tracking and relevant fields.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>34968181</pmid><doi>10.1109/TNNLS.2021.3136907</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-5832-1494</orcidid><orcidid>https://orcid.org/0000-0001-5472-1426</orcidid><orcidid>https://orcid.org/0000-0002-5669-9354</orcidid><orcidid>https://orcid.org/0000-0003-3354-9617</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2162-237X |
ispartof | IEEE transaction on neural networks and learning systems, 2023-09, Vol.34 (9), p.5497-5516 |
issn | 2162-237X 2162-2388 |
language | eng |
recordid | cdi_ieee_primary_9666461 |
source | IEEE Electronic Library (IEL) |
subjects | Computer architecture Computer vision Deep learning Deep learning (DL) Feature extraction Multiple target tracking multiple-object tracking (MOT) Nonhomogeneous media Optical tracking Representations single-object tracking (SOT) Target tracking Task analysis Tracking Trajectory Visual discrimination learning Visual fields Visual tasks Visualization |
title | Deep Learning in Visual Tracking: A Review |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T15%3A59%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Learning%20in%20Visual%20Tracking:%20A%20Review&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Jiao,%20Licheng&rft.date=2023-09-01&rft.volume=34&rft.issue=9&rft.spage=5497&rft.epage=5516&rft.pages=5497-5516&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2021.3136907&rft_dat=%3Cproquest_RIE%3E2859710851%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2859710851&rft_id=info:pmid/34968181&rft_ieee_id=9666461&rfr_iscdi=true |