A Novel Polarized Skylight Navigation Model for Bionic Navigation With Marginalized Unscented Kalman Filter

Bionic navigation is an essential technology in GPS-denied environment for vehicle navigation. This paper combined strapdown inertial navigation system, polarized skylight sensors and odometer to design a new navigation model. In particular, a novel measurement model is developed based on polarized...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2022-03, Vol.22 (5), p.4472-4483
Hauptverfasser: Dou, Qingfeng, Du, Tao, Wang, Shanpeng, Yang, Jian, Guo, Lei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4483
container_issue 5
container_start_page 4472
container_title IEEE sensors journal
container_volume 22
creator Dou, Qingfeng
Du, Tao
Wang, Shanpeng
Yang, Jian
Guo, Lei
description Bionic navigation is an essential technology in GPS-denied environment for vehicle navigation. This paper combined strapdown inertial navigation system, polarized skylight sensors and odometer to design a new navigation model. In particular, a novel measurement model is developed based on polarized skylight. This model primarily utilizes the cross product to compute the error between the measured polarization vector and the theoretical polarization vector. It differs from the error computed by strapdown inertial navigation system in design vector measurement model. It deals with the problem of the directional ambiguity of polarization vector difference directly. Considering the measured polarization vector error due to computation and multiple scattering from atmospheric molecules, the states are augmented with the measured vector error to form a partially nonlinear, bionic integrated navigation model. To reduce the computation burden, marginalised unscented Kalman filter is presented to estimate the unknown states. The observability analysis method of piece-wise constant systems is applied to compute the observability matrix and singular value. Simulation results show that linear maneuver and angular maneuver can improve the degree of the observability of attitude and measured polarized vector error. Finally, experiments further verify the effectiveness of proposed models and method.
doi_str_mv 10.1109/JSEN.2021.3139353
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9665748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9665748</ieee_id><sourcerecordid>2635044059</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-28e2c12f8930310440a60d98d38618dd5040add8a298f82865c8482f1e714caa3</originalsourceid><addsrcrecordid>eNpNkFtPAjEQhRujiYj-AONLE58Xe9nuto9IwBuiCRJ9a5ptF4rLFtuFBH-9XSHGpzkzc-Zk8gFwiVEPYyRuHqfDSY8ggnsUU0EZPQIdzBhPcJ7y41ZTlKQ0_zgFZyEsEcIiZ3kHfPbhxG1NBV9dpbz9NhpOP3eVnS8aOFFbO1eNdTV8djp6SufhbWxt8X_3bpsFfFZ-bmtV_SbM6lCYuonqSVUrVcORrRrjz8FJqapgLg61C2aj4dvgPhm_3D0M-uOkIII2CeGGFJiUXFBEMUpTpDKkBdeUZ5hrzVCcaM0VEbzkhGes4CknJTY5TgulaBdc73PX3n1tTGjk0m18fC5IklHWJjIRXXjvKrwLwZtSrr1dKb-TGMmWqWyZypapPDCNN1f7G2uM-fOLLGORMv0B_ohySA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2635044059</pqid></control><display><type>article</type><title>A Novel Polarized Skylight Navigation Model for Bionic Navigation With Marginalized Unscented Kalman Filter</title><source>IEEE Electronic Library (IEL)</source><creator>Dou, Qingfeng ; Du, Tao ; Wang, Shanpeng ; Yang, Jian ; Guo, Lei</creator><creatorcontrib>Dou, Qingfeng ; Du, Tao ; Wang, Shanpeng ; Yang, Jian ; Guo, Lei</creatorcontrib><description>Bionic navigation is an essential technology in GPS-denied environment for vehicle navigation. This paper combined strapdown inertial navigation system, polarized skylight sensors and odometer to design a new navigation model. In particular, a novel measurement model is developed based on polarized skylight. This model primarily utilizes the cross product to compute the error between the measured polarization vector and the theoretical polarization vector. It differs from the error computed by strapdown inertial navigation system in design vector measurement model. It deals with the problem of the directional ambiguity of polarization vector difference directly. Considering the measured polarization vector error due to computation and multiple scattering from atmospheric molecules, the states are augmented with the measured vector error to form a partially nonlinear, bionic integrated navigation model. To reduce the computation burden, marginalised unscented Kalman filter is presented to estimate the unknown states. The observability analysis method of piece-wise constant systems is applied to compute the observability matrix and singular value. Simulation results show that linear maneuver and angular maneuver can improve the degree of the observability of attitude and measured polarized vector error. Finally, experiments further verify the effectiveness of proposed models and method.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2021.3139353</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Atmospheric measurements ; Atmospheric models ; Biological system modeling ; Bionics ; Computation ; Computational modeling ; Error analysis ; Inertial navigation ; integrated navigation ; Kalman filters ; marginalised unscented Kalman filter ; Mathematical analysis ; Measurement uncertainty ; Navigation systems ; Observability ; observability analysis ; Odometers ; Polarization ; Polarized skylight ; Satellite navigation systems ; Sensors ; Skylights ; Strapdown inertial navigation ; Sun</subject><ispartof>IEEE sensors journal, 2022-03, Vol.22 (5), p.4472-4483</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-28e2c12f8930310440a60d98d38618dd5040add8a298f82865c8482f1e714caa3</citedby><cites>FETCH-LOGICAL-c293t-28e2c12f8930310440a60d98d38618dd5040add8a298f82865c8482f1e714caa3</cites><orcidid>0000-0001-7094-7310 ; 0000-0002-3061-2337 ; 0000-0002-9536-4864 ; 0000-0001-5960-7593 ; 0000-0003-1364-5986</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9665748$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9665748$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dou, Qingfeng</creatorcontrib><creatorcontrib>Du, Tao</creatorcontrib><creatorcontrib>Wang, Shanpeng</creatorcontrib><creatorcontrib>Yang, Jian</creatorcontrib><creatorcontrib>Guo, Lei</creatorcontrib><title>A Novel Polarized Skylight Navigation Model for Bionic Navigation With Marginalized Unscented Kalman Filter</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Bionic navigation is an essential technology in GPS-denied environment for vehicle navigation. This paper combined strapdown inertial navigation system, polarized skylight sensors and odometer to design a new navigation model. In particular, a novel measurement model is developed based on polarized skylight. This model primarily utilizes the cross product to compute the error between the measured polarization vector and the theoretical polarization vector. It differs from the error computed by strapdown inertial navigation system in design vector measurement model. It deals with the problem of the directional ambiguity of polarization vector difference directly. Considering the measured polarization vector error due to computation and multiple scattering from atmospheric molecules, the states are augmented with the measured vector error to form a partially nonlinear, bionic integrated navigation model. To reduce the computation burden, marginalised unscented Kalman filter is presented to estimate the unknown states. The observability analysis method of piece-wise constant systems is applied to compute the observability matrix and singular value. Simulation results show that linear maneuver and angular maneuver can improve the degree of the observability of attitude and measured polarized vector error. Finally, experiments further verify the effectiveness of proposed models and method.</description><subject>Atmospheric measurements</subject><subject>Atmospheric models</subject><subject>Biological system modeling</subject><subject>Bionics</subject><subject>Computation</subject><subject>Computational modeling</subject><subject>Error analysis</subject><subject>Inertial navigation</subject><subject>integrated navigation</subject><subject>Kalman filters</subject><subject>marginalised unscented Kalman filter</subject><subject>Mathematical analysis</subject><subject>Measurement uncertainty</subject><subject>Navigation systems</subject><subject>Observability</subject><subject>observability analysis</subject><subject>Odometers</subject><subject>Polarization</subject><subject>Polarized skylight</subject><subject>Satellite navigation systems</subject><subject>Sensors</subject><subject>Skylights</subject><subject>Strapdown inertial navigation</subject><subject>Sun</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkFtPAjEQhRujiYj-AONLE58Xe9nuto9IwBuiCRJ9a5ptF4rLFtuFBH-9XSHGpzkzc-Zk8gFwiVEPYyRuHqfDSY8ggnsUU0EZPQIdzBhPcJ7y41ZTlKQ0_zgFZyEsEcIiZ3kHfPbhxG1NBV9dpbz9NhpOP3eVnS8aOFFbO1eNdTV8djp6SufhbWxt8X_3bpsFfFZ-bmtV_SbM6lCYuonqSVUrVcORrRrjz8FJqapgLg61C2aj4dvgPhm_3D0M-uOkIII2CeGGFJiUXFBEMUpTpDKkBdeUZ5hrzVCcaM0VEbzkhGes4CknJTY5TgulaBdc73PX3n1tTGjk0m18fC5IklHWJjIRXXjvKrwLwZtSrr1dKb-TGMmWqWyZypapPDCNN1f7G2uM-fOLLGORMv0B_ohySA</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Dou, Qingfeng</creator><creator>Du, Tao</creator><creator>Wang, Shanpeng</creator><creator>Yang, Jian</creator><creator>Guo, Lei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7094-7310</orcidid><orcidid>https://orcid.org/0000-0002-3061-2337</orcidid><orcidid>https://orcid.org/0000-0002-9536-4864</orcidid><orcidid>https://orcid.org/0000-0001-5960-7593</orcidid><orcidid>https://orcid.org/0000-0003-1364-5986</orcidid></search><sort><creationdate>20220301</creationdate><title>A Novel Polarized Skylight Navigation Model for Bionic Navigation With Marginalized Unscented Kalman Filter</title><author>Dou, Qingfeng ; Du, Tao ; Wang, Shanpeng ; Yang, Jian ; Guo, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-28e2c12f8930310440a60d98d38618dd5040add8a298f82865c8482f1e714caa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Atmospheric measurements</topic><topic>Atmospheric models</topic><topic>Biological system modeling</topic><topic>Bionics</topic><topic>Computation</topic><topic>Computational modeling</topic><topic>Error analysis</topic><topic>Inertial navigation</topic><topic>integrated navigation</topic><topic>Kalman filters</topic><topic>marginalised unscented Kalman filter</topic><topic>Mathematical analysis</topic><topic>Measurement uncertainty</topic><topic>Navigation systems</topic><topic>Observability</topic><topic>observability analysis</topic><topic>Odometers</topic><topic>Polarization</topic><topic>Polarized skylight</topic><topic>Satellite navigation systems</topic><topic>Sensors</topic><topic>Skylights</topic><topic>Strapdown inertial navigation</topic><topic>Sun</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dou, Qingfeng</creatorcontrib><creatorcontrib>Du, Tao</creatorcontrib><creatorcontrib>Wang, Shanpeng</creatorcontrib><creatorcontrib>Yang, Jian</creatorcontrib><creatorcontrib>Guo, Lei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dou, Qingfeng</au><au>Du, Tao</au><au>Wang, Shanpeng</au><au>Yang, Jian</au><au>Guo, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Polarized Skylight Navigation Model for Bionic Navigation With Marginalized Unscented Kalman Filter</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>22</volume><issue>5</issue><spage>4472</spage><epage>4483</epage><pages>4472-4483</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Bionic navigation is an essential technology in GPS-denied environment for vehicle navigation. This paper combined strapdown inertial navigation system, polarized skylight sensors and odometer to design a new navigation model. In particular, a novel measurement model is developed based on polarized skylight. This model primarily utilizes the cross product to compute the error between the measured polarization vector and the theoretical polarization vector. It differs from the error computed by strapdown inertial navigation system in design vector measurement model. It deals with the problem of the directional ambiguity of polarization vector difference directly. Considering the measured polarization vector error due to computation and multiple scattering from atmospheric molecules, the states are augmented with the measured vector error to form a partially nonlinear, bionic integrated navigation model. To reduce the computation burden, marginalised unscented Kalman filter is presented to estimate the unknown states. The observability analysis method of piece-wise constant systems is applied to compute the observability matrix and singular value. Simulation results show that linear maneuver and angular maneuver can improve the degree of the observability of attitude and measured polarized vector error. Finally, experiments further verify the effectiveness of proposed models and method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2021.3139353</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7094-7310</orcidid><orcidid>https://orcid.org/0000-0002-3061-2337</orcidid><orcidid>https://orcid.org/0000-0002-9536-4864</orcidid><orcidid>https://orcid.org/0000-0001-5960-7593</orcidid><orcidid>https://orcid.org/0000-0003-1364-5986</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2022-03, Vol.22 (5), p.4472-4483
issn 1530-437X
1558-1748
language eng
recordid cdi_ieee_primary_9665748
source IEEE Electronic Library (IEL)
subjects Atmospheric measurements
Atmospheric models
Biological system modeling
Bionics
Computation
Computational modeling
Error analysis
Inertial navigation
integrated navigation
Kalman filters
marginalised unscented Kalman filter
Mathematical analysis
Measurement uncertainty
Navigation systems
Observability
observability analysis
Odometers
Polarization
Polarized skylight
Satellite navigation systems
Sensors
Skylights
Strapdown inertial navigation
Sun
title A Novel Polarized Skylight Navigation Model for Bionic Navigation With Marginalized Unscented Kalman Filter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T10%3A25%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Polarized%20Skylight%20Navigation%20Model%20for%20Bionic%20Navigation%20With%20Marginalized%20Unscented%20Kalman%20Filter&rft.jtitle=IEEE%20sensors%20journal&rft.au=Dou,%20Qingfeng&rft.date=2022-03-01&rft.volume=22&rft.issue=5&rft.spage=4472&rft.epage=4483&rft.pages=4472-4483&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2021.3139353&rft_dat=%3Cproquest_RIE%3E2635044059%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2635044059&rft_id=info:pmid/&rft_ieee_id=9665748&rfr_iscdi=true