A Novel Polarized Skylight Navigation Model for Bionic Navigation With Marginalized Unscented Kalman Filter
Bionic navigation is an essential technology in GPS-denied environment for vehicle navigation. This paper combined strapdown inertial navigation system, polarized skylight sensors and odometer to design a new navigation model. In particular, a novel measurement model is developed based on polarized...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2022-03, Vol.22 (5), p.4472-4483 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4483 |
---|---|
container_issue | 5 |
container_start_page | 4472 |
container_title | IEEE sensors journal |
container_volume | 22 |
creator | Dou, Qingfeng Du, Tao Wang, Shanpeng Yang, Jian Guo, Lei |
description | Bionic navigation is an essential technology in GPS-denied environment for vehicle navigation. This paper combined strapdown inertial navigation system, polarized skylight sensors and odometer to design a new navigation model. In particular, a novel measurement model is developed based on polarized skylight. This model primarily utilizes the cross product to compute the error between the measured polarization vector and the theoretical polarization vector. It differs from the error computed by strapdown inertial navigation system in design vector measurement model. It deals with the problem of the directional ambiguity of polarization vector difference directly. Considering the measured polarization vector error due to computation and multiple scattering from atmospheric molecules, the states are augmented with the measured vector error to form a partially nonlinear, bionic integrated navigation model. To reduce the computation burden, marginalised unscented Kalman filter is presented to estimate the unknown states. The observability analysis method of piece-wise constant systems is applied to compute the observability matrix and singular value. Simulation results show that linear maneuver and angular maneuver can improve the degree of the observability of attitude and measured polarized vector error. Finally, experiments further verify the effectiveness of proposed models and method. |
doi_str_mv | 10.1109/JSEN.2021.3139353 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9665748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9665748</ieee_id><sourcerecordid>2635044059</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-28e2c12f8930310440a60d98d38618dd5040add8a298f82865c8482f1e714caa3</originalsourceid><addsrcrecordid>eNpNkFtPAjEQhRujiYj-AONLE58Xe9nuto9IwBuiCRJ9a5ptF4rLFtuFBH-9XSHGpzkzc-Zk8gFwiVEPYyRuHqfDSY8ggnsUU0EZPQIdzBhPcJ7y41ZTlKQ0_zgFZyEsEcIiZ3kHfPbhxG1NBV9dpbz9NhpOP3eVnS8aOFFbO1eNdTV8djp6SufhbWxt8X_3bpsFfFZ-bmtV_SbM6lCYuonqSVUrVcORrRrjz8FJqapgLg61C2aj4dvgPhm_3D0M-uOkIII2CeGGFJiUXFBEMUpTpDKkBdeUZ5hrzVCcaM0VEbzkhGes4CknJTY5TgulaBdc73PX3n1tTGjk0m18fC5IklHWJjIRXXjvKrwLwZtSrr1dKb-TGMmWqWyZypapPDCNN1f7G2uM-fOLLGORMv0B_ohySA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2635044059</pqid></control><display><type>article</type><title>A Novel Polarized Skylight Navigation Model for Bionic Navigation With Marginalized Unscented Kalman Filter</title><source>IEEE Electronic Library (IEL)</source><creator>Dou, Qingfeng ; Du, Tao ; Wang, Shanpeng ; Yang, Jian ; Guo, Lei</creator><creatorcontrib>Dou, Qingfeng ; Du, Tao ; Wang, Shanpeng ; Yang, Jian ; Guo, Lei</creatorcontrib><description>Bionic navigation is an essential technology in GPS-denied environment for vehicle navigation. This paper combined strapdown inertial navigation system, polarized skylight sensors and odometer to design a new navigation model. In particular, a novel measurement model is developed based on polarized skylight. This model primarily utilizes the cross product to compute the error between the measured polarization vector and the theoretical polarization vector. It differs from the error computed by strapdown inertial navigation system in design vector measurement model. It deals with the problem of the directional ambiguity of polarization vector difference directly. Considering the measured polarization vector error due to computation and multiple scattering from atmospheric molecules, the states are augmented with the measured vector error to form a partially nonlinear, bionic integrated navigation model. To reduce the computation burden, marginalised unscented Kalman filter is presented to estimate the unknown states. The observability analysis method of piece-wise constant systems is applied to compute the observability matrix and singular value. Simulation results show that linear maneuver and angular maneuver can improve the degree of the observability of attitude and measured polarized vector error. Finally, experiments further verify the effectiveness of proposed models and method.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2021.3139353</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Atmospheric measurements ; Atmospheric models ; Biological system modeling ; Bionics ; Computation ; Computational modeling ; Error analysis ; Inertial navigation ; integrated navigation ; Kalman filters ; marginalised unscented Kalman filter ; Mathematical analysis ; Measurement uncertainty ; Navigation systems ; Observability ; observability analysis ; Odometers ; Polarization ; Polarized skylight ; Satellite navigation systems ; Sensors ; Skylights ; Strapdown inertial navigation ; Sun</subject><ispartof>IEEE sensors journal, 2022-03, Vol.22 (5), p.4472-4483</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-28e2c12f8930310440a60d98d38618dd5040add8a298f82865c8482f1e714caa3</citedby><cites>FETCH-LOGICAL-c293t-28e2c12f8930310440a60d98d38618dd5040add8a298f82865c8482f1e714caa3</cites><orcidid>0000-0001-7094-7310 ; 0000-0002-3061-2337 ; 0000-0002-9536-4864 ; 0000-0001-5960-7593 ; 0000-0003-1364-5986</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9665748$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9665748$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dou, Qingfeng</creatorcontrib><creatorcontrib>Du, Tao</creatorcontrib><creatorcontrib>Wang, Shanpeng</creatorcontrib><creatorcontrib>Yang, Jian</creatorcontrib><creatorcontrib>Guo, Lei</creatorcontrib><title>A Novel Polarized Skylight Navigation Model for Bionic Navigation With Marginalized Unscented Kalman Filter</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Bionic navigation is an essential technology in GPS-denied environment for vehicle navigation. This paper combined strapdown inertial navigation system, polarized skylight sensors and odometer to design a new navigation model. In particular, a novel measurement model is developed based on polarized skylight. This model primarily utilizes the cross product to compute the error between the measured polarization vector and the theoretical polarization vector. It differs from the error computed by strapdown inertial navigation system in design vector measurement model. It deals with the problem of the directional ambiguity of polarization vector difference directly. Considering the measured polarization vector error due to computation and multiple scattering from atmospheric molecules, the states are augmented with the measured vector error to form a partially nonlinear, bionic integrated navigation model. To reduce the computation burden, marginalised unscented Kalman filter is presented to estimate the unknown states. The observability analysis method of piece-wise constant systems is applied to compute the observability matrix and singular value. Simulation results show that linear maneuver and angular maneuver can improve the degree of the observability of attitude and measured polarized vector error. Finally, experiments further verify the effectiveness of proposed models and method.</description><subject>Atmospheric measurements</subject><subject>Atmospheric models</subject><subject>Biological system modeling</subject><subject>Bionics</subject><subject>Computation</subject><subject>Computational modeling</subject><subject>Error analysis</subject><subject>Inertial navigation</subject><subject>integrated navigation</subject><subject>Kalman filters</subject><subject>marginalised unscented Kalman filter</subject><subject>Mathematical analysis</subject><subject>Measurement uncertainty</subject><subject>Navigation systems</subject><subject>Observability</subject><subject>observability analysis</subject><subject>Odometers</subject><subject>Polarization</subject><subject>Polarized skylight</subject><subject>Satellite navigation systems</subject><subject>Sensors</subject><subject>Skylights</subject><subject>Strapdown inertial navigation</subject><subject>Sun</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkFtPAjEQhRujiYj-AONLE58Xe9nuto9IwBuiCRJ9a5ptF4rLFtuFBH-9XSHGpzkzc-Zk8gFwiVEPYyRuHqfDSY8ggnsUU0EZPQIdzBhPcJ7y41ZTlKQ0_zgFZyEsEcIiZ3kHfPbhxG1NBV9dpbz9NhpOP3eVnS8aOFFbO1eNdTV8djp6SufhbWxt8X_3bpsFfFZ-bmtV_SbM6lCYuonqSVUrVcORrRrjz8FJqapgLg61C2aj4dvgPhm_3D0M-uOkIII2CeGGFJiUXFBEMUpTpDKkBdeUZ5hrzVCcaM0VEbzkhGes4CknJTY5TgulaBdc73PX3n1tTGjk0m18fC5IklHWJjIRXXjvKrwLwZtSrr1dKb-TGMmWqWyZypapPDCNN1f7G2uM-fOLLGORMv0B_ohySA</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Dou, Qingfeng</creator><creator>Du, Tao</creator><creator>Wang, Shanpeng</creator><creator>Yang, Jian</creator><creator>Guo, Lei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7094-7310</orcidid><orcidid>https://orcid.org/0000-0002-3061-2337</orcidid><orcidid>https://orcid.org/0000-0002-9536-4864</orcidid><orcidid>https://orcid.org/0000-0001-5960-7593</orcidid><orcidid>https://orcid.org/0000-0003-1364-5986</orcidid></search><sort><creationdate>20220301</creationdate><title>A Novel Polarized Skylight Navigation Model for Bionic Navigation With Marginalized Unscented Kalman Filter</title><author>Dou, Qingfeng ; Du, Tao ; Wang, Shanpeng ; Yang, Jian ; Guo, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-28e2c12f8930310440a60d98d38618dd5040add8a298f82865c8482f1e714caa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Atmospheric measurements</topic><topic>Atmospheric models</topic><topic>Biological system modeling</topic><topic>Bionics</topic><topic>Computation</topic><topic>Computational modeling</topic><topic>Error analysis</topic><topic>Inertial navigation</topic><topic>integrated navigation</topic><topic>Kalman filters</topic><topic>marginalised unscented Kalman filter</topic><topic>Mathematical analysis</topic><topic>Measurement uncertainty</topic><topic>Navigation systems</topic><topic>Observability</topic><topic>observability analysis</topic><topic>Odometers</topic><topic>Polarization</topic><topic>Polarized skylight</topic><topic>Satellite navigation systems</topic><topic>Sensors</topic><topic>Skylights</topic><topic>Strapdown inertial navigation</topic><topic>Sun</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dou, Qingfeng</creatorcontrib><creatorcontrib>Du, Tao</creatorcontrib><creatorcontrib>Wang, Shanpeng</creatorcontrib><creatorcontrib>Yang, Jian</creatorcontrib><creatorcontrib>Guo, Lei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dou, Qingfeng</au><au>Du, Tao</au><au>Wang, Shanpeng</au><au>Yang, Jian</au><au>Guo, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Polarized Skylight Navigation Model for Bionic Navigation With Marginalized Unscented Kalman Filter</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>22</volume><issue>5</issue><spage>4472</spage><epage>4483</epage><pages>4472-4483</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Bionic navigation is an essential technology in GPS-denied environment for vehicle navigation. This paper combined strapdown inertial navigation system, polarized skylight sensors and odometer to design a new navigation model. In particular, a novel measurement model is developed based on polarized skylight. This model primarily utilizes the cross product to compute the error between the measured polarization vector and the theoretical polarization vector. It differs from the error computed by strapdown inertial navigation system in design vector measurement model. It deals with the problem of the directional ambiguity of polarization vector difference directly. Considering the measured polarization vector error due to computation and multiple scattering from atmospheric molecules, the states are augmented with the measured vector error to form a partially nonlinear, bionic integrated navigation model. To reduce the computation burden, marginalised unscented Kalman filter is presented to estimate the unknown states. The observability analysis method of piece-wise constant systems is applied to compute the observability matrix and singular value. Simulation results show that linear maneuver and angular maneuver can improve the degree of the observability of attitude and measured polarized vector error. Finally, experiments further verify the effectiveness of proposed models and method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2021.3139353</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7094-7310</orcidid><orcidid>https://orcid.org/0000-0002-3061-2337</orcidid><orcidid>https://orcid.org/0000-0002-9536-4864</orcidid><orcidid>https://orcid.org/0000-0001-5960-7593</orcidid><orcidid>https://orcid.org/0000-0003-1364-5986</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2022-03, Vol.22 (5), p.4472-4483 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_ieee_primary_9665748 |
source | IEEE Electronic Library (IEL) |
subjects | Atmospheric measurements Atmospheric models Biological system modeling Bionics Computation Computational modeling Error analysis Inertial navigation integrated navigation Kalman filters marginalised unscented Kalman filter Mathematical analysis Measurement uncertainty Navigation systems Observability observability analysis Odometers Polarization Polarized skylight Satellite navigation systems Sensors Skylights Strapdown inertial navigation Sun |
title | A Novel Polarized Skylight Navigation Model for Bionic Navigation With Marginalized Unscented Kalman Filter |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T10%3A25%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Polarized%20Skylight%20Navigation%20Model%20for%20Bionic%20Navigation%20With%20Marginalized%20Unscented%20Kalman%20Filter&rft.jtitle=IEEE%20sensors%20journal&rft.au=Dou,%20Qingfeng&rft.date=2022-03-01&rft.volume=22&rft.issue=5&rft.spage=4472&rft.epage=4483&rft.pages=4472-4483&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2021.3139353&rft_dat=%3Cproquest_RIE%3E2635044059%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2635044059&rft_id=info:pmid/&rft_ieee_id=9665748&rfr_iscdi=true |