Behavioral Diversity Generated From Body-Environment Interactions in a Simulated Tensegrity Robot

Tensegrity structures, which are made of struts and tendons, are attracting attention as a platform for adaptive and resilient robots with connections to biological systems. However, they are difficult to control because of their elasticity, deformability, and tight coupling between their elements....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics and automation letters 2022-04, Vol.7 (2), p.1597-1604
Hauptverfasser: Terajima, Ryo, Inoue, Katsuma, Yonekura, Shogo, Nakajima, Kohei, Kuniyoshi, Yasuo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1604
container_issue 2
container_start_page 1597
container_title IEEE robotics and automation letters
container_volume 7
creator Terajima, Ryo
Inoue, Katsuma
Yonekura, Shogo
Nakajima, Kohei
Kuniyoshi, Yasuo
description Tensegrity structures, which are made of struts and tendons, are attracting attention as a platform for adaptive and resilient robots with connections to biological systems. However, they are difficult to control because of their elasticity, deformability, and tight coupling between their elements. Studies on morphological computation and physical reservoir computing suggest, however, that the temporal patterns generated by body dynamics can be exploited to perform computations. In this work, we analyze the diverse collection of behaviors generated by driving tensegrity robots with simple periodic motor commands. We find that characteristic locomotion gaits, such as sliding and rolling, appear in specific regions of the system parameter space. Furthermore, the analysis shows that both normal and anomalous deterministic diffusion emerge because of interactions of the body with the environment. The highly nonlinear relationship between the parameters and robot behavior highlights the difficulty of controlling tensegrities. However, we demonstrate that our results of these nontrivial relationships can in fact be directly exploited to achieve adaptive behavioral switching. These results point to potential uses of tensegrity dynamics as computational resources.
doi_str_mv 10.1109/LRA.2021.3139083
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9665236</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9665236</ieee_id><sourcerecordid>2621066467</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-fd6809302fa66a285075b43c7f44577aff7037c3e036b38105a1f96f77f5e7553</originalsourceid><addsrcrecordid>eNpNkE1rAjEQhkNpoWK9F3oJ9Lw2H5tkc1SrVhAK1p6XuE7aiCY2iYL_vmstpacZmOd9Bx6E7inpU0r003wx6DPCaJ9TrknFr1CHcaUKrqS8_rffol5KG0IIFUxxLTrIDOHTHF2IZouf3RFicvmEp-AhmgxrPIlhh4dhfSrG_uhi8DvwGc98bu9NdsEn7Dw2-M3tDtufxBJ8go94rlmEVch36MaabYLe7-yi98l4OXop5q_T2WgwLxqudS7sWlZEc8KskdKwShAlViVvlC1LoZSxVhGuGg6EyxWvKBGGWi2tUlaAEoJ30eOldx_D1wFSrjfhEH37smaSUSJlKVVLkQvVxJBSBFvvo9uZeKopqc8u69ZlfXZZ_7psIw-XiAOAP1xLKRiX_Bui529L</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621066467</pqid></control><display><type>article</type><title>Behavioral Diversity Generated From Body-Environment Interactions in a Simulated Tensegrity Robot</title><source>IEEE Electronic Library (IEL)</source><creator>Terajima, Ryo ; Inoue, Katsuma ; Yonekura, Shogo ; Nakajima, Kohei ; Kuniyoshi, Yasuo</creator><creatorcontrib>Terajima, Ryo ; Inoue, Katsuma ; Yonekura, Shogo ; Nakajima, Kohei ; Kuniyoshi, Yasuo</creatorcontrib><description>Tensegrity structures, which are made of struts and tendons, are attracting attention as a platform for adaptive and resilient robots with connections to biological systems. However, they are difficult to control because of their elasticity, deformability, and tight coupling between their elements. Studies on morphological computation and physical reservoir computing suggest, however, that the temporal patterns generated by body dynamics can be exploited to perform computations. In this work, we analyze the diverse collection of behaviors generated by driving tensegrity robots with simple periodic motor commands. We find that characteristic locomotion gaits, such as sliding and rolling, appear in specific regions of the system parameter space. Furthermore, the analysis shows that both normal and anomalous deterministic diffusion emerge because of interactions of the body with the environment. The highly nonlinear relationship between the parameters and robot behavior highlights the difficulty of controlling tensegrities. However, we demonstrate that our results of these nontrivial relationships can in fact be directly exploited to achieve adaptive behavioral switching. These results point to potential uses of tensegrity dynamics as computational resources.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2021.3139083</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>and learning for soft robots ; control ; Couplings ; dynamics ; flexible robotics ; Formability ; Friction ; Indexes ; Locomotion ; Modeling ; morphological computation ; Parameters ; Robots ; Struts ; Tactile sensors ; Tendons ; tensegrity robots ; Tensegrity structures ; Trajectory</subject><ispartof>IEEE robotics and automation letters, 2022-04, Vol.7 (2), p.1597-1604</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-fd6809302fa66a285075b43c7f44577aff7037c3e036b38105a1f96f77f5e7553</citedby><cites>FETCH-LOGICAL-c399t-fd6809302fa66a285075b43c7f44577aff7037c3e036b38105a1f96f77f5e7553</cites><orcidid>0000-0002-5394-0130 ; 0000-0002-8513-8468 ; 0000-0001-8443-4161 ; 0000-0001-5589-4054</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9665236$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids></links><search><creatorcontrib>Terajima, Ryo</creatorcontrib><creatorcontrib>Inoue, Katsuma</creatorcontrib><creatorcontrib>Yonekura, Shogo</creatorcontrib><creatorcontrib>Nakajima, Kohei</creatorcontrib><creatorcontrib>Kuniyoshi, Yasuo</creatorcontrib><title>Behavioral Diversity Generated From Body-Environment Interactions in a Simulated Tensegrity Robot</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>Tensegrity structures, which are made of struts and tendons, are attracting attention as a platform for adaptive and resilient robots with connections to biological systems. However, they are difficult to control because of their elasticity, deformability, and tight coupling between their elements. Studies on morphological computation and physical reservoir computing suggest, however, that the temporal patterns generated by body dynamics can be exploited to perform computations. In this work, we analyze the diverse collection of behaviors generated by driving tensegrity robots with simple periodic motor commands. We find that characteristic locomotion gaits, such as sliding and rolling, appear in specific regions of the system parameter space. Furthermore, the analysis shows that both normal and anomalous deterministic diffusion emerge because of interactions of the body with the environment. The highly nonlinear relationship between the parameters and robot behavior highlights the difficulty of controlling tensegrities. However, we demonstrate that our results of these nontrivial relationships can in fact be directly exploited to achieve adaptive behavioral switching. These results point to potential uses of tensegrity dynamics as computational resources.</description><subject>and learning for soft robots</subject><subject>control</subject><subject>Couplings</subject><subject>dynamics</subject><subject>flexible robotics</subject><subject>Formability</subject><subject>Friction</subject><subject>Indexes</subject><subject>Locomotion</subject><subject>Modeling</subject><subject>morphological computation</subject><subject>Parameters</subject><subject>Robots</subject><subject>Struts</subject><subject>Tactile sensors</subject><subject>Tendons</subject><subject>tensegrity robots</subject><subject>Tensegrity structures</subject><subject>Trajectory</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkE1rAjEQhkNpoWK9F3oJ9Lw2H5tkc1SrVhAK1p6XuE7aiCY2iYL_vmstpacZmOd9Bx6E7inpU0r003wx6DPCaJ9TrknFr1CHcaUKrqS8_rffol5KG0IIFUxxLTrIDOHTHF2IZouf3RFicvmEp-AhmgxrPIlhh4dhfSrG_uhi8DvwGc98bu9NdsEn7Dw2-M3tDtufxBJ8go94rlmEVch36MaabYLe7-yi98l4OXop5q_T2WgwLxqudS7sWlZEc8KskdKwShAlViVvlC1LoZSxVhGuGg6EyxWvKBGGWi2tUlaAEoJ30eOldx_D1wFSrjfhEH37smaSUSJlKVVLkQvVxJBSBFvvo9uZeKopqc8u69ZlfXZZ_7psIw-XiAOAP1xLKRiX_Bui529L</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Terajima, Ryo</creator><creator>Inoue, Katsuma</creator><creator>Yonekura, Shogo</creator><creator>Nakajima, Kohei</creator><creator>Kuniyoshi, Yasuo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5394-0130</orcidid><orcidid>https://orcid.org/0000-0002-8513-8468</orcidid><orcidid>https://orcid.org/0000-0001-8443-4161</orcidid><orcidid>https://orcid.org/0000-0001-5589-4054</orcidid></search><sort><creationdate>20220401</creationdate><title>Behavioral Diversity Generated From Body-Environment Interactions in a Simulated Tensegrity Robot</title><author>Terajima, Ryo ; Inoue, Katsuma ; Yonekura, Shogo ; Nakajima, Kohei ; Kuniyoshi, Yasuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-fd6809302fa66a285075b43c7f44577aff7037c3e036b38105a1f96f77f5e7553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>and learning for soft robots</topic><topic>control</topic><topic>Couplings</topic><topic>dynamics</topic><topic>flexible robotics</topic><topic>Formability</topic><topic>Friction</topic><topic>Indexes</topic><topic>Locomotion</topic><topic>Modeling</topic><topic>morphological computation</topic><topic>Parameters</topic><topic>Robots</topic><topic>Struts</topic><topic>Tactile sensors</topic><topic>Tendons</topic><topic>tensegrity robots</topic><topic>Tensegrity structures</topic><topic>Trajectory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Terajima, Ryo</creatorcontrib><creatorcontrib>Inoue, Katsuma</creatorcontrib><creatorcontrib>Yonekura, Shogo</creatorcontrib><creatorcontrib>Nakajima, Kohei</creatorcontrib><creatorcontrib>Kuniyoshi, Yasuo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Terajima, Ryo</au><au>Inoue, Katsuma</au><au>Yonekura, Shogo</au><au>Nakajima, Kohei</au><au>Kuniyoshi, Yasuo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Behavioral Diversity Generated From Body-Environment Interactions in a Simulated Tensegrity Robot</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>7</volume><issue>2</issue><spage>1597</spage><epage>1604</epage><pages>1597-1604</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>Tensegrity structures, which are made of struts and tendons, are attracting attention as a platform for adaptive and resilient robots with connections to biological systems. However, they are difficult to control because of their elasticity, deformability, and tight coupling between their elements. Studies on morphological computation and physical reservoir computing suggest, however, that the temporal patterns generated by body dynamics can be exploited to perform computations. In this work, we analyze the diverse collection of behaviors generated by driving tensegrity robots with simple periodic motor commands. We find that characteristic locomotion gaits, such as sliding and rolling, appear in specific regions of the system parameter space. Furthermore, the analysis shows that both normal and anomalous deterministic diffusion emerge because of interactions of the body with the environment. The highly nonlinear relationship between the parameters and robot behavior highlights the difficulty of controlling tensegrities. However, we demonstrate that our results of these nontrivial relationships can in fact be directly exploited to achieve adaptive behavioral switching. These results point to potential uses of tensegrity dynamics as computational resources.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2021.3139083</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-5394-0130</orcidid><orcidid>https://orcid.org/0000-0002-8513-8468</orcidid><orcidid>https://orcid.org/0000-0001-8443-4161</orcidid><orcidid>https://orcid.org/0000-0001-5589-4054</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2377-3766
ispartof IEEE robotics and automation letters, 2022-04, Vol.7 (2), p.1597-1604
issn 2377-3766
2377-3766
language eng
recordid cdi_ieee_primary_9665236
source IEEE Electronic Library (IEL)
subjects and learning for soft robots
control
Couplings
dynamics
flexible robotics
Formability
Friction
Indexes
Locomotion
Modeling
morphological computation
Parameters
Robots
Struts
Tactile sensors
Tendons
tensegrity robots
Tensegrity structures
Trajectory
title Behavioral Diversity Generated From Body-Environment Interactions in a Simulated Tensegrity Robot
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T14%3A35%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Behavioral%20Diversity%20Generated%20From%20Body-Environment%20Interactions%20in%20a%20Simulated%20Tensegrity%20Robot&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Terajima,%20Ryo&rft.date=2022-04-01&rft.volume=7&rft.issue=2&rft.spage=1597&rft.epage=1604&rft.pages=1597-1604&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2021.3139083&rft_dat=%3Cproquest_ieee_%3E2621066467%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2621066467&rft_id=info:pmid/&rft_ieee_id=9665236&rfr_iscdi=true