Behavioral Diversity Generated From Body-Environment Interactions in a Simulated Tensegrity Robot
Tensegrity structures, which are made of struts and tendons, are attracting attention as a platform for adaptive and resilient robots with connections to biological systems. However, they are difficult to control because of their elasticity, deformability, and tight coupling between their elements....
Gespeichert in:
Veröffentlicht in: | IEEE robotics and automation letters 2022-04, Vol.7 (2), p.1597-1604 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1604 |
---|---|
container_issue | 2 |
container_start_page | 1597 |
container_title | IEEE robotics and automation letters |
container_volume | 7 |
creator | Terajima, Ryo Inoue, Katsuma Yonekura, Shogo Nakajima, Kohei Kuniyoshi, Yasuo |
description | Tensegrity structures, which are made of struts and tendons, are attracting attention as a platform for adaptive and resilient robots with connections to biological systems. However, they are difficult to control because of their elasticity, deformability, and tight coupling between their elements. Studies on morphological computation and physical reservoir computing suggest, however, that the temporal patterns generated by body dynamics can be exploited to perform computations. In this work, we analyze the diverse collection of behaviors generated by driving tensegrity robots with simple periodic motor commands. We find that characteristic locomotion gaits, such as sliding and rolling, appear in specific regions of the system parameter space. Furthermore, the analysis shows that both normal and anomalous deterministic diffusion emerge because of interactions of the body with the environment. The highly nonlinear relationship between the parameters and robot behavior highlights the difficulty of controlling tensegrities. However, we demonstrate that our results of these nontrivial relationships can in fact be directly exploited to achieve adaptive behavioral switching. These results point to potential uses of tensegrity dynamics as computational resources. |
doi_str_mv | 10.1109/LRA.2021.3139083 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9665236</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9665236</ieee_id><sourcerecordid>2621066467</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-fd6809302fa66a285075b43c7f44577aff7037c3e036b38105a1f96f77f5e7553</originalsourceid><addsrcrecordid>eNpNkE1rAjEQhkNpoWK9F3oJ9Lw2H5tkc1SrVhAK1p6XuE7aiCY2iYL_vmstpacZmOd9Bx6E7inpU0r003wx6DPCaJ9TrknFr1CHcaUKrqS8_rffol5KG0IIFUxxLTrIDOHTHF2IZouf3RFicvmEp-AhmgxrPIlhh4dhfSrG_uhi8DvwGc98bu9NdsEn7Dw2-M3tDtufxBJ8go94rlmEVch36MaabYLe7-yi98l4OXop5q_T2WgwLxqudS7sWlZEc8KskdKwShAlViVvlC1LoZSxVhGuGg6EyxWvKBGGWi2tUlaAEoJ30eOldx_D1wFSrjfhEH37smaSUSJlKVVLkQvVxJBSBFvvo9uZeKopqc8u69ZlfXZZ_7psIw-XiAOAP1xLKRiX_Bui529L</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621066467</pqid></control><display><type>article</type><title>Behavioral Diversity Generated From Body-Environment Interactions in a Simulated Tensegrity Robot</title><source>IEEE Electronic Library (IEL)</source><creator>Terajima, Ryo ; Inoue, Katsuma ; Yonekura, Shogo ; Nakajima, Kohei ; Kuniyoshi, Yasuo</creator><creatorcontrib>Terajima, Ryo ; Inoue, Katsuma ; Yonekura, Shogo ; Nakajima, Kohei ; Kuniyoshi, Yasuo</creatorcontrib><description>Tensegrity structures, which are made of struts and tendons, are attracting attention as a platform for adaptive and resilient robots with connections to biological systems. However, they are difficult to control because of their elasticity, deformability, and tight coupling between their elements. Studies on morphological computation and physical reservoir computing suggest, however, that the temporal patterns generated by body dynamics can be exploited to perform computations. In this work, we analyze the diverse collection of behaviors generated by driving tensegrity robots with simple periodic motor commands. We find that characteristic locomotion gaits, such as sliding and rolling, appear in specific regions of the system parameter space. Furthermore, the analysis shows that both normal and anomalous deterministic diffusion emerge because of interactions of the body with the environment. The highly nonlinear relationship between the parameters and robot behavior highlights the difficulty of controlling tensegrities. However, we demonstrate that our results of these nontrivial relationships can in fact be directly exploited to achieve adaptive behavioral switching. These results point to potential uses of tensegrity dynamics as computational resources.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2021.3139083</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>and learning for soft robots ; control ; Couplings ; dynamics ; flexible robotics ; Formability ; Friction ; Indexes ; Locomotion ; Modeling ; morphological computation ; Parameters ; Robots ; Struts ; Tactile sensors ; Tendons ; tensegrity robots ; Tensegrity structures ; Trajectory</subject><ispartof>IEEE robotics and automation letters, 2022-04, Vol.7 (2), p.1597-1604</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-fd6809302fa66a285075b43c7f44577aff7037c3e036b38105a1f96f77f5e7553</citedby><cites>FETCH-LOGICAL-c399t-fd6809302fa66a285075b43c7f44577aff7037c3e036b38105a1f96f77f5e7553</cites><orcidid>0000-0002-5394-0130 ; 0000-0002-8513-8468 ; 0000-0001-8443-4161 ; 0000-0001-5589-4054</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9665236$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids></links><search><creatorcontrib>Terajima, Ryo</creatorcontrib><creatorcontrib>Inoue, Katsuma</creatorcontrib><creatorcontrib>Yonekura, Shogo</creatorcontrib><creatorcontrib>Nakajima, Kohei</creatorcontrib><creatorcontrib>Kuniyoshi, Yasuo</creatorcontrib><title>Behavioral Diversity Generated From Body-Environment Interactions in a Simulated Tensegrity Robot</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>Tensegrity structures, which are made of struts and tendons, are attracting attention as a platform for adaptive and resilient robots with connections to biological systems. However, they are difficult to control because of their elasticity, deformability, and tight coupling between their elements. Studies on morphological computation and physical reservoir computing suggest, however, that the temporal patterns generated by body dynamics can be exploited to perform computations. In this work, we analyze the diverse collection of behaviors generated by driving tensegrity robots with simple periodic motor commands. We find that characteristic locomotion gaits, such as sliding and rolling, appear in specific regions of the system parameter space. Furthermore, the analysis shows that both normal and anomalous deterministic diffusion emerge because of interactions of the body with the environment. The highly nonlinear relationship between the parameters and robot behavior highlights the difficulty of controlling tensegrities. However, we demonstrate that our results of these nontrivial relationships can in fact be directly exploited to achieve adaptive behavioral switching. These results point to potential uses of tensegrity dynamics as computational resources.</description><subject>and learning for soft robots</subject><subject>control</subject><subject>Couplings</subject><subject>dynamics</subject><subject>flexible robotics</subject><subject>Formability</subject><subject>Friction</subject><subject>Indexes</subject><subject>Locomotion</subject><subject>Modeling</subject><subject>morphological computation</subject><subject>Parameters</subject><subject>Robots</subject><subject>Struts</subject><subject>Tactile sensors</subject><subject>Tendons</subject><subject>tensegrity robots</subject><subject>Tensegrity structures</subject><subject>Trajectory</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkE1rAjEQhkNpoWK9F3oJ9Lw2H5tkc1SrVhAK1p6XuE7aiCY2iYL_vmstpacZmOd9Bx6E7inpU0r003wx6DPCaJ9TrknFr1CHcaUKrqS8_rffol5KG0IIFUxxLTrIDOHTHF2IZouf3RFicvmEp-AhmgxrPIlhh4dhfSrG_uhi8DvwGc98bu9NdsEn7Dw2-M3tDtufxBJ8go94rlmEVch36MaabYLe7-yi98l4OXop5q_T2WgwLxqudS7sWlZEc8KskdKwShAlViVvlC1LoZSxVhGuGg6EyxWvKBGGWi2tUlaAEoJ30eOldx_D1wFSrjfhEH37smaSUSJlKVVLkQvVxJBSBFvvo9uZeKopqc8u69ZlfXZZ_7psIw-XiAOAP1xLKRiX_Bui529L</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Terajima, Ryo</creator><creator>Inoue, Katsuma</creator><creator>Yonekura, Shogo</creator><creator>Nakajima, Kohei</creator><creator>Kuniyoshi, Yasuo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5394-0130</orcidid><orcidid>https://orcid.org/0000-0002-8513-8468</orcidid><orcidid>https://orcid.org/0000-0001-8443-4161</orcidid><orcidid>https://orcid.org/0000-0001-5589-4054</orcidid></search><sort><creationdate>20220401</creationdate><title>Behavioral Diversity Generated From Body-Environment Interactions in a Simulated Tensegrity Robot</title><author>Terajima, Ryo ; Inoue, Katsuma ; Yonekura, Shogo ; Nakajima, Kohei ; Kuniyoshi, Yasuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-fd6809302fa66a285075b43c7f44577aff7037c3e036b38105a1f96f77f5e7553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>and learning for soft robots</topic><topic>control</topic><topic>Couplings</topic><topic>dynamics</topic><topic>flexible robotics</topic><topic>Formability</topic><topic>Friction</topic><topic>Indexes</topic><topic>Locomotion</topic><topic>Modeling</topic><topic>morphological computation</topic><topic>Parameters</topic><topic>Robots</topic><topic>Struts</topic><topic>Tactile sensors</topic><topic>Tendons</topic><topic>tensegrity robots</topic><topic>Tensegrity structures</topic><topic>Trajectory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Terajima, Ryo</creatorcontrib><creatorcontrib>Inoue, Katsuma</creatorcontrib><creatorcontrib>Yonekura, Shogo</creatorcontrib><creatorcontrib>Nakajima, Kohei</creatorcontrib><creatorcontrib>Kuniyoshi, Yasuo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Terajima, Ryo</au><au>Inoue, Katsuma</au><au>Yonekura, Shogo</au><au>Nakajima, Kohei</au><au>Kuniyoshi, Yasuo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Behavioral Diversity Generated From Body-Environment Interactions in a Simulated Tensegrity Robot</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>7</volume><issue>2</issue><spage>1597</spage><epage>1604</epage><pages>1597-1604</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>Tensegrity structures, which are made of struts and tendons, are attracting attention as a platform for adaptive and resilient robots with connections to biological systems. However, they are difficult to control because of their elasticity, deformability, and tight coupling between their elements. Studies on morphological computation and physical reservoir computing suggest, however, that the temporal patterns generated by body dynamics can be exploited to perform computations. In this work, we analyze the diverse collection of behaviors generated by driving tensegrity robots with simple periodic motor commands. We find that characteristic locomotion gaits, such as sliding and rolling, appear in specific regions of the system parameter space. Furthermore, the analysis shows that both normal and anomalous deterministic diffusion emerge because of interactions of the body with the environment. The highly nonlinear relationship between the parameters and robot behavior highlights the difficulty of controlling tensegrities. However, we demonstrate that our results of these nontrivial relationships can in fact be directly exploited to achieve adaptive behavioral switching. These results point to potential uses of tensegrity dynamics as computational resources.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2021.3139083</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-5394-0130</orcidid><orcidid>https://orcid.org/0000-0002-8513-8468</orcidid><orcidid>https://orcid.org/0000-0001-8443-4161</orcidid><orcidid>https://orcid.org/0000-0001-5589-4054</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2377-3766 |
ispartof | IEEE robotics and automation letters, 2022-04, Vol.7 (2), p.1597-1604 |
issn | 2377-3766 2377-3766 |
language | eng |
recordid | cdi_ieee_primary_9665236 |
source | IEEE Electronic Library (IEL) |
subjects | and learning for soft robots control Couplings dynamics flexible robotics Formability Friction Indexes Locomotion Modeling morphological computation Parameters Robots Struts Tactile sensors Tendons tensegrity robots Tensegrity structures Trajectory |
title | Behavioral Diversity Generated From Body-Environment Interactions in a Simulated Tensegrity Robot |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T14%3A35%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Behavioral%20Diversity%20Generated%20From%20Body-Environment%20Interactions%20in%20a%20Simulated%20Tensegrity%20Robot&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Terajima,%20Ryo&rft.date=2022-04-01&rft.volume=7&rft.issue=2&rft.spage=1597&rft.epage=1604&rft.pages=1597-1604&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2021.3139083&rft_dat=%3Cproquest_ieee_%3E2621066467%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2621066467&rft_id=info:pmid/&rft_ieee_id=9665236&rfr_iscdi=true |