Random Sampling-and-Averaging Techniques for Single-Photon Arrival-Time Detections in Quantum Applications: Theoretical Analysis and Realization Methodology

A random sampling-and-averaging (RSA) technique based on stochastic Monte Carlo methods is described in this paper for enhancing the accuracy of single-photon arrival-time measurements down to sub-picosecond ranges in emerging quantum applications. The theoretical variances of both synchronous and a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. I, Regular papers Regular papers, 2022-04, Vol.69 (4), p.1452-1465
Hauptverfasser: Wu, Tony, Yang, Ruoman, Hsueh, Tzu-Chien
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1465
container_issue 4
container_start_page 1452
container_title IEEE transactions on circuits and systems. I, Regular papers
container_volume 69
creator Wu, Tony
Yang, Ruoman
Hsueh, Tzu-Chien
description A random sampling-and-averaging (RSA) technique based on stochastic Monte Carlo methods is described in this paper for enhancing the accuracy of single-photon arrival-time measurements down to sub-picosecond ranges in emerging quantum applications. The theoretical variances of both synchronous and asynchronous RSA techniques are presented in the mathematical formats and experimentally verified by the Monte Carlo simulations. Meanwhile, the methodology of converting the mathematical models into an almost all-digital low-power integrated-circuit is elaborated by a circuit-level example with the instruction of setting circuit parameters. Along with the superior measurement resolution, scalable dynamic ranges, high linearity, high noise immunity, and low power/area consumption, the primary limitation of the RSA techniques has also been addressed for the forthcoming conversion-rate enhancement techniques.
doi_str_mv 10.1109/TCSI.2021.3135833
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9664421</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9664421</ieee_id><sourcerecordid>2645252178</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-aa74979b2bae38ede1d2697ee891c718b38cd47460e8dc4fed93d9c0bc257b3e3</originalsourceid><addsrcrecordid>eNo9UclOwzAQjRBIlOUDEBdLnF28ZLG5RWWrBGJpOEeOM21dJXGx00rlW_hYHIo4zczTe29m9KLogpIxpUReF5PZdMwIo2NOeSI4P4hGNEkEJoKkh0MfSyw4E8fRifcrQpgknI6i73fV1bZFM9WuG9MtcBhxvgWnFmFCBehlZz434NHcOjQLWAP4dWl726HcObNVDS5MC-gWetC9sZ1HpkNvG9X1mxbl6-Cq1S9-g4olWAd9ABqUd6rZeeNRWIjeQTXm65eGnqFf2to2drE7i47mqvFw_ldPo4_7u2LyiJ9eHqaT_AlrJnmPlcpimcmKVQq4gBpozVKZAQhJdUZFxYWu4yxOCYhax3OoJa-lJpVmSVZx4KfR1d537ezwa1-u7MaFA33J0jhhCaOZCCy6Z2lnvXcwL9fOtMrtSkrKIYRyCKEcQij_Qgiay73GAMA_X6ZpHDPKfwCsw4cR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2645252178</pqid></control><display><type>article</type><title>Random Sampling-and-Averaging Techniques for Single-Photon Arrival-Time Detections in Quantum Applications: Theoretical Analysis and Realization Methodology</title><source>IEEE Electronic Library (IEL)</source><creator>Wu, Tony ; Yang, Ruoman ; Hsueh, Tzu-Chien</creator><creatorcontrib>Wu, Tony ; Yang, Ruoman ; Hsueh, Tzu-Chien</creatorcontrib><description>A random sampling-and-averaging (RSA) technique based on stochastic Monte Carlo methods is described in this paper for enhancing the accuracy of single-photon arrival-time measurements down to sub-picosecond ranges in emerging quantum applications. The theoretical variances of both synchronous and asynchronous RSA techniques are presented in the mathematical formats and experimentally verified by the Monte Carlo simulations. Meanwhile, the methodology of converting the mathematical models into an almost all-digital low-power integrated-circuit is elaborated by a circuit-level example with the instruction of setting circuit parameters. Along with the superior measurement resolution, scalable dynamic ranges, high linearity, high noise immunity, and low power/area consumption, the primary limitation of the RSA techniques has also been addressed for the forthcoming conversion-rate enhancement techniques.</description><identifier>ISSN: 1549-8328</identifier><identifier>EISSN: 1558-0806</identifier><identifier>DOI: 10.1109/TCSI.2021.3135833</identifier><identifier>CODEN: ITCSCH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Circuits ; Clocks ; Correlated random variable ; Dynamic range ; independent and identically distributed ; joint probability density function ; Linearity ; Monte Carlo method ; Monte Carlo methods ; Monte Carlo simulation ; Photonics ; Photons ; Power consumption ; quantum probability amplitude ; Random sampling ; Reactive power ; stochastic random sampling ; Time measurement ; time-correlated single-photon counting ; time-domain modulo operation ; time-to-digital converter ; Voltage measurement</subject><ispartof>IEEE transactions on circuits and systems. I, Regular papers, 2022-04, Vol.69 (4), p.1452-1465</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-aa74979b2bae38ede1d2697ee891c718b38cd47460e8dc4fed93d9c0bc257b3e3</citedby><cites>FETCH-LOGICAL-c293t-aa74979b2bae38ede1d2697ee891c718b38cd47460e8dc4fed93d9c0bc257b3e3</cites><orcidid>0000-0002-8596-6976</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9664421$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9664421$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wu, Tony</creatorcontrib><creatorcontrib>Yang, Ruoman</creatorcontrib><creatorcontrib>Hsueh, Tzu-Chien</creatorcontrib><title>Random Sampling-and-Averaging Techniques for Single-Photon Arrival-Time Detections in Quantum Applications: Theoretical Analysis and Realization Methodology</title><title>IEEE transactions on circuits and systems. I, Regular papers</title><addtitle>TCSI</addtitle><description>A random sampling-and-averaging (RSA) technique based on stochastic Monte Carlo methods is described in this paper for enhancing the accuracy of single-photon arrival-time measurements down to sub-picosecond ranges in emerging quantum applications. The theoretical variances of both synchronous and asynchronous RSA techniques are presented in the mathematical formats and experimentally verified by the Monte Carlo simulations. Meanwhile, the methodology of converting the mathematical models into an almost all-digital low-power integrated-circuit is elaborated by a circuit-level example with the instruction of setting circuit parameters. Along with the superior measurement resolution, scalable dynamic ranges, high linearity, high noise immunity, and low power/area consumption, the primary limitation of the RSA techniques has also been addressed for the forthcoming conversion-rate enhancement techniques.</description><subject>Circuits</subject><subject>Clocks</subject><subject>Correlated random variable</subject><subject>Dynamic range</subject><subject>independent and identically distributed</subject><subject>joint probability density function</subject><subject>Linearity</subject><subject>Monte Carlo method</subject><subject>Monte Carlo methods</subject><subject>Monte Carlo simulation</subject><subject>Photonics</subject><subject>Photons</subject><subject>Power consumption</subject><subject>quantum probability amplitude</subject><subject>Random sampling</subject><subject>Reactive power</subject><subject>stochastic random sampling</subject><subject>Time measurement</subject><subject>time-correlated single-photon counting</subject><subject>time-domain modulo operation</subject><subject>time-to-digital converter</subject><subject>Voltage measurement</subject><issn>1549-8328</issn><issn>1558-0806</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UclOwzAQjRBIlOUDEBdLnF28ZLG5RWWrBGJpOEeOM21dJXGx00rlW_hYHIo4zczTe29m9KLogpIxpUReF5PZdMwIo2NOeSI4P4hGNEkEJoKkh0MfSyw4E8fRifcrQpgknI6i73fV1bZFM9WuG9MtcBhxvgWnFmFCBehlZz434NHcOjQLWAP4dWl726HcObNVDS5MC-gWetC9sZ1HpkNvG9X1mxbl6-Cq1S9-g4olWAd9ABqUd6rZeeNRWIjeQTXm65eGnqFf2to2drE7i47mqvFw_ldPo4_7u2LyiJ9eHqaT_AlrJnmPlcpimcmKVQq4gBpozVKZAQhJdUZFxYWu4yxOCYhax3OoJa-lJpVmSVZx4KfR1d537ezwa1-u7MaFA33J0jhhCaOZCCy6Z2lnvXcwL9fOtMrtSkrKIYRyCKEcQij_Qgiay73GAMA_X6ZpHDPKfwCsw4cR</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Wu, Tony</creator><creator>Yang, Ruoman</creator><creator>Hsueh, Tzu-Chien</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8596-6976</orcidid></search><sort><creationdate>20220401</creationdate><title>Random Sampling-and-Averaging Techniques for Single-Photon Arrival-Time Detections in Quantum Applications: Theoretical Analysis and Realization Methodology</title><author>Wu, Tony ; Yang, Ruoman ; Hsueh, Tzu-Chien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-aa74979b2bae38ede1d2697ee891c718b38cd47460e8dc4fed93d9c0bc257b3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Circuits</topic><topic>Clocks</topic><topic>Correlated random variable</topic><topic>Dynamic range</topic><topic>independent and identically distributed</topic><topic>joint probability density function</topic><topic>Linearity</topic><topic>Monte Carlo method</topic><topic>Monte Carlo methods</topic><topic>Monte Carlo simulation</topic><topic>Photonics</topic><topic>Photons</topic><topic>Power consumption</topic><topic>quantum probability amplitude</topic><topic>Random sampling</topic><topic>Reactive power</topic><topic>stochastic random sampling</topic><topic>Time measurement</topic><topic>time-correlated single-photon counting</topic><topic>time-domain modulo operation</topic><topic>time-to-digital converter</topic><topic>Voltage measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Tony</creatorcontrib><creatorcontrib>Yang, Ruoman</creatorcontrib><creatorcontrib>Hsueh, Tzu-Chien</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wu, Tony</au><au>Yang, Ruoman</au><au>Hsueh, Tzu-Chien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Random Sampling-and-Averaging Techniques for Single-Photon Arrival-Time Detections in Quantum Applications: Theoretical Analysis and Realization Methodology</atitle><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle><stitle>TCSI</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>69</volume><issue>4</issue><spage>1452</spage><epage>1465</epage><pages>1452-1465</pages><issn>1549-8328</issn><eissn>1558-0806</eissn><coden>ITCSCH</coden><abstract>A random sampling-and-averaging (RSA) technique based on stochastic Monte Carlo methods is described in this paper for enhancing the accuracy of single-photon arrival-time measurements down to sub-picosecond ranges in emerging quantum applications. The theoretical variances of both synchronous and asynchronous RSA techniques are presented in the mathematical formats and experimentally verified by the Monte Carlo simulations. Meanwhile, the methodology of converting the mathematical models into an almost all-digital low-power integrated-circuit is elaborated by a circuit-level example with the instruction of setting circuit parameters. Along with the superior measurement resolution, scalable dynamic ranges, high linearity, high noise immunity, and low power/area consumption, the primary limitation of the RSA techniques has also been addressed for the forthcoming conversion-rate enhancement techniques.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSI.2021.3135833</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-8596-6976</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1549-8328
ispartof IEEE transactions on circuits and systems. I, Regular papers, 2022-04, Vol.69 (4), p.1452-1465
issn 1549-8328
1558-0806
language eng
recordid cdi_ieee_primary_9664421
source IEEE Electronic Library (IEL)
subjects Circuits
Clocks
Correlated random variable
Dynamic range
independent and identically distributed
joint probability density function
Linearity
Monte Carlo method
Monte Carlo methods
Monte Carlo simulation
Photonics
Photons
Power consumption
quantum probability amplitude
Random sampling
Reactive power
stochastic random sampling
Time measurement
time-correlated single-photon counting
time-domain modulo operation
time-to-digital converter
Voltage measurement
title Random Sampling-and-Averaging Techniques for Single-Photon Arrival-Time Detections in Quantum Applications: Theoretical Analysis and Realization Methodology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A35%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Random%20Sampling-and-Averaging%20Techniques%20for%20Single-Photon%20Arrival-Time%20Detections%20in%20Quantum%20Applications:%20Theoretical%20Analysis%20and%20Realization%20Methodology&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20I,%20Regular%20papers&rft.au=Wu,%20Tony&rft.date=2022-04-01&rft.volume=69&rft.issue=4&rft.spage=1452&rft.epage=1465&rft.pages=1452-1465&rft.issn=1549-8328&rft.eissn=1558-0806&rft.coden=ITCSCH&rft_id=info:doi/10.1109/TCSI.2021.3135833&rft_dat=%3Cproquest_RIE%3E2645252178%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2645252178&rft_id=info:pmid/&rft_ieee_id=9664421&rfr_iscdi=true