Random Sampling-and-Averaging Techniques for Single-Photon Arrival-Time Detections in Quantum Applications: Theoretical Analysis and Realization Methodology
A random sampling-and-averaging (RSA) technique based on stochastic Monte Carlo methods is described in this paper for enhancing the accuracy of single-photon arrival-time measurements down to sub-picosecond ranges in emerging quantum applications. The theoretical variances of both synchronous and a...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems. I, Regular papers Regular papers, 2022-04, Vol.69 (4), p.1452-1465 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1465 |
---|---|
container_issue | 4 |
container_start_page | 1452 |
container_title | IEEE transactions on circuits and systems. I, Regular papers |
container_volume | 69 |
creator | Wu, Tony Yang, Ruoman Hsueh, Tzu-Chien |
description | A random sampling-and-averaging (RSA) technique based on stochastic Monte Carlo methods is described in this paper for enhancing the accuracy of single-photon arrival-time measurements down to sub-picosecond ranges in emerging quantum applications. The theoretical variances of both synchronous and asynchronous RSA techniques are presented in the mathematical formats and experimentally verified by the Monte Carlo simulations. Meanwhile, the methodology of converting the mathematical models into an almost all-digital low-power integrated-circuit is elaborated by a circuit-level example with the instruction of setting circuit parameters. Along with the superior measurement resolution, scalable dynamic ranges, high linearity, high noise immunity, and low power/area consumption, the primary limitation of the RSA techniques has also been addressed for the forthcoming conversion-rate enhancement techniques. |
doi_str_mv | 10.1109/TCSI.2021.3135833 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9664421</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9664421</ieee_id><sourcerecordid>2645252178</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-aa74979b2bae38ede1d2697ee891c718b38cd47460e8dc4fed93d9c0bc257b3e3</originalsourceid><addsrcrecordid>eNo9UclOwzAQjRBIlOUDEBdLnF28ZLG5RWWrBGJpOEeOM21dJXGx00rlW_hYHIo4zczTe29m9KLogpIxpUReF5PZdMwIo2NOeSI4P4hGNEkEJoKkh0MfSyw4E8fRifcrQpgknI6i73fV1bZFM9WuG9MtcBhxvgWnFmFCBehlZz434NHcOjQLWAP4dWl726HcObNVDS5MC-gWetC9sZ1HpkNvG9X1mxbl6-Cq1S9-g4olWAd9ABqUd6rZeeNRWIjeQTXm65eGnqFf2to2drE7i47mqvFw_ldPo4_7u2LyiJ9eHqaT_AlrJnmPlcpimcmKVQq4gBpozVKZAQhJdUZFxYWu4yxOCYhax3OoJa-lJpVmSVZx4KfR1d537ezwa1-u7MaFA33J0jhhCaOZCCy6Z2lnvXcwL9fOtMrtSkrKIYRyCKEcQij_Qgiay73GAMA_X6ZpHDPKfwCsw4cR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2645252178</pqid></control><display><type>article</type><title>Random Sampling-and-Averaging Techniques for Single-Photon Arrival-Time Detections in Quantum Applications: Theoretical Analysis and Realization Methodology</title><source>IEEE Electronic Library (IEL)</source><creator>Wu, Tony ; Yang, Ruoman ; Hsueh, Tzu-Chien</creator><creatorcontrib>Wu, Tony ; Yang, Ruoman ; Hsueh, Tzu-Chien</creatorcontrib><description>A random sampling-and-averaging (RSA) technique based on stochastic Monte Carlo methods is described in this paper for enhancing the accuracy of single-photon arrival-time measurements down to sub-picosecond ranges in emerging quantum applications. The theoretical variances of both synchronous and asynchronous RSA techniques are presented in the mathematical formats and experimentally verified by the Monte Carlo simulations. Meanwhile, the methodology of converting the mathematical models into an almost all-digital low-power integrated-circuit is elaborated by a circuit-level example with the instruction of setting circuit parameters. Along with the superior measurement resolution, scalable dynamic ranges, high linearity, high noise immunity, and low power/area consumption, the primary limitation of the RSA techniques has also been addressed for the forthcoming conversion-rate enhancement techniques.</description><identifier>ISSN: 1549-8328</identifier><identifier>EISSN: 1558-0806</identifier><identifier>DOI: 10.1109/TCSI.2021.3135833</identifier><identifier>CODEN: ITCSCH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Circuits ; Clocks ; Correlated random variable ; Dynamic range ; independent and identically distributed ; joint probability density function ; Linearity ; Monte Carlo method ; Monte Carlo methods ; Monte Carlo simulation ; Photonics ; Photons ; Power consumption ; quantum probability amplitude ; Random sampling ; Reactive power ; stochastic random sampling ; Time measurement ; time-correlated single-photon counting ; time-domain modulo operation ; time-to-digital converter ; Voltage measurement</subject><ispartof>IEEE transactions on circuits and systems. I, Regular papers, 2022-04, Vol.69 (4), p.1452-1465</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-aa74979b2bae38ede1d2697ee891c718b38cd47460e8dc4fed93d9c0bc257b3e3</citedby><cites>FETCH-LOGICAL-c293t-aa74979b2bae38ede1d2697ee891c718b38cd47460e8dc4fed93d9c0bc257b3e3</cites><orcidid>0000-0002-8596-6976</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9664421$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9664421$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wu, Tony</creatorcontrib><creatorcontrib>Yang, Ruoman</creatorcontrib><creatorcontrib>Hsueh, Tzu-Chien</creatorcontrib><title>Random Sampling-and-Averaging Techniques for Single-Photon Arrival-Time Detections in Quantum Applications: Theoretical Analysis and Realization Methodology</title><title>IEEE transactions on circuits and systems. I, Regular papers</title><addtitle>TCSI</addtitle><description>A random sampling-and-averaging (RSA) technique based on stochastic Monte Carlo methods is described in this paper for enhancing the accuracy of single-photon arrival-time measurements down to sub-picosecond ranges in emerging quantum applications. The theoretical variances of both synchronous and asynchronous RSA techniques are presented in the mathematical formats and experimentally verified by the Monte Carlo simulations. Meanwhile, the methodology of converting the mathematical models into an almost all-digital low-power integrated-circuit is elaborated by a circuit-level example with the instruction of setting circuit parameters. Along with the superior measurement resolution, scalable dynamic ranges, high linearity, high noise immunity, and low power/area consumption, the primary limitation of the RSA techniques has also been addressed for the forthcoming conversion-rate enhancement techniques.</description><subject>Circuits</subject><subject>Clocks</subject><subject>Correlated random variable</subject><subject>Dynamic range</subject><subject>independent and identically distributed</subject><subject>joint probability density function</subject><subject>Linearity</subject><subject>Monte Carlo method</subject><subject>Monte Carlo methods</subject><subject>Monte Carlo simulation</subject><subject>Photonics</subject><subject>Photons</subject><subject>Power consumption</subject><subject>quantum probability amplitude</subject><subject>Random sampling</subject><subject>Reactive power</subject><subject>stochastic random sampling</subject><subject>Time measurement</subject><subject>time-correlated single-photon counting</subject><subject>time-domain modulo operation</subject><subject>time-to-digital converter</subject><subject>Voltage measurement</subject><issn>1549-8328</issn><issn>1558-0806</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UclOwzAQjRBIlOUDEBdLnF28ZLG5RWWrBGJpOEeOM21dJXGx00rlW_hYHIo4zczTe29m9KLogpIxpUReF5PZdMwIo2NOeSI4P4hGNEkEJoKkh0MfSyw4E8fRifcrQpgknI6i73fV1bZFM9WuG9MtcBhxvgWnFmFCBehlZz434NHcOjQLWAP4dWl726HcObNVDS5MC-gWetC9sZ1HpkNvG9X1mxbl6-Cq1S9-g4olWAd9ABqUd6rZeeNRWIjeQTXm65eGnqFf2to2drE7i47mqvFw_ldPo4_7u2LyiJ9eHqaT_AlrJnmPlcpimcmKVQq4gBpozVKZAQhJdUZFxYWu4yxOCYhax3OoJa-lJpVmSVZx4KfR1d537ezwa1-u7MaFA33J0jhhCaOZCCy6Z2lnvXcwL9fOtMrtSkrKIYRyCKEcQij_Qgiay73GAMA_X6ZpHDPKfwCsw4cR</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Wu, Tony</creator><creator>Yang, Ruoman</creator><creator>Hsueh, Tzu-Chien</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8596-6976</orcidid></search><sort><creationdate>20220401</creationdate><title>Random Sampling-and-Averaging Techniques for Single-Photon Arrival-Time Detections in Quantum Applications: Theoretical Analysis and Realization Methodology</title><author>Wu, Tony ; Yang, Ruoman ; Hsueh, Tzu-Chien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-aa74979b2bae38ede1d2697ee891c718b38cd47460e8dc4fed93d9c0bc257b3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Circuits</topic><topic>Clocks</topic><topic>Correlated random variable</topic><topic>Dynamic range</topic><topic>independent and identically distributed</topic><topic>joint probability density function</topic><topic>Linearity</topic><topic>Monte Carlo method</topic><topic>Monte Carlo methods</topic><topic>Monte Carlo simulation</topic><topic>Photonics</topic><topic>Photons</topic><topic>Power consumption</topic><topic>quantum probability amplitude</topic><topic>Random sampling</topic><topic>Reactive power</topic><topic>stochastic random sampling</topic><topic>Time measurement</topic><topic>time-correlated single-photon counting</topic><topic>time-domain modulo operation</topic><topic>time-to-digital converter</topic><topic>Voltage measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Tony</creatorcontrib><creatorcontrib>Yang, Ruoman</creatorcontrib><creatorcontrib>Hsueh, Tzu-Chien</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wu, Tony</au><au>Yang, Ruoman</au><au>Hsueh, Tzu-Chien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Random Sampling-and-Averaging Techniques for Single-Photon Arrival-Time Detections in Quantum Applications: Theoretical Analysis and Realization Methodology</atitle><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle><stitle>TCSI</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>69</volume><issue>4</issue><spage>1452</spage><epage>1465</epage><pages>1452-1465</pages><issn>1549-8328</issn><eissn>1558-0806</eissn><coden>ITCSCH</coden><abstract>A random sampling-and-averaging (RSA) technique based on stochastic Monte Carlo methods is described in this paper for enhancing the accuracy of single-photon arrival-time measurements down to sub-picosecond ranges in emerging quantum applications. The theoretical variances of both synchronous and asynchronous RSA techniques are presented in the mathematical formats and experimentally verified by the Monte Carlo simulations. Meanwhile, the methodology of converting the mathematical models into an almost all-digital low-power integrated-circuit is elaborated by a circuit-level example with the instruction of setting circuit parameters. Along with the superior measurement resolution, scalable dynamic ranges, high linearity, high noise immunity, and low power/area consumption, the primary limitation of the RSA techniques has also been addressed for the forthcoming conversion-rate enhancement techniques.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSI.2021.3135833</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-8596-6976</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1549-8328 |
ispartof | IEEE transactions on circuits and systems. I, Regular papers, 2022-04, Vol.69 (4), p.1452-1465 |
issn | 1549-8328 1558-0806 |
language | eng |
recordid | cdi_ieee_primary_9664421 |
source | IEEE Electronic Library (IEL) |
subjects | Circuits Clocks Correlated random variable Dynamic range independent and identically distributed joint probability density function Linearity Monte Carlo method Monte Carlo methods Monte Carlo simulation Photonics Photons Power consumption quantum probability amplitude Random sampling Reactive power stochastic random sampling Time measurement time-correlated single-photon counting time-domain modulo operation time-to-digital converter Voltage measurement |
title | Random Sampling-and-Averaging Techniques for Single-Photon Arrival-Time Detections in Quantum Applications: Theoretical Analysis and Realization Methodology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A35%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Random%20Sampling-and-Averaging%20Techniques%20for%20Single-Photon%20Arrival-Time%20Detections%20in%20Quantum%20Applications:%20Theoretical%20Analysis%20and%20Realization%20Methodology&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20I,%20Regular%20papers&rft.au=Wu,%20Tony&rft.date=2022-04-01&rft.volume=69&rft.issue=4&rft.spage=1452&rft.epage=1465&rft.pages=1452-1465&rft.issn=1549-8328&rft.eissn=1558-0806&rft.coden=ITCSCH&rft_id=info:doi/10.1109/TCSI.2021.3135833&rft_dat=%3Cproquest_RIE%3E2645252178%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2645252178&rft_id=info:pmid/&rft_ieee_id=9664421&rfr_iscdi=true |