Deep Reinforcement Learning Enhanced Greedy Optimization for Online Scheduling of Batched Tasks in Cloud HPC Systems
In a large cloud data center HPC system, a critical problem is how to allocate the submitted tasks to heterogeneous servers that will achieve the goal of maximizing the system's gain defined as the value of completed tasks minus system operation costs. We consider this problem in the online set...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on parallel and distributed systems 2022-11, Vol.33 (11), p.3003-3014 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!